
How are Multilingual Systems Constructed: Characterizing Language

Use and Selection in Open-Source Multilingual Sotware

WEN LI,Washington State University, USA

AUSTIN MARINO,Washington State University, USA

HAORAN YANG,Washington State University, USA

NA MENG, Virginia Tech, USA
LI LI,Monash University, Australia

HAIPENG CAI∗,Washington State University, USA

For many years now, modern software is known to be developed in multiple languages (hence termed as multilingual or

multi-language software). Yet to this date we still only have very limited knowledge about how multilingual software systems

are constructed. For instance, it is not yet really clear how diferent languages are used, selected together, and why they

have been so in multilingual software development. Given the fact that using multiple languages in a single software project

has become a norm, understanding language use and selection (i.e, language proile) as a basic element of the multilingual

construction in contemporary software engineering is an essential irst step.

In this paper, we set out to ill this gap with a large-scale characterization study on language use and selection in

open-source multilingual software. We start with presenting an updated overview of language use in 7,113 GitHub projects

spanning ive past years by characterizing overall statistics of language proiles, followed by a deeper look into the functionality

relevance/justiication of language selection in these projects through association rule mining.We proceedwith an evolutionary

characterization of 1,000 GitHub projects for each of 10 past years to provide a longitudinal view of how language use and

selection have changed over the years, as well as how the association between functionality and language selection has been

evolving.

Among many other indings, our study revealed a growing trend of using 3 to 5 languages in one multilingual software

project and noticeable stableness of top language selections. We found a non-trivial association between language selection

and certain functionality domains, which was less stable than that with individual languages over time. In a historical context,

we also have observed major shifts in these characteristics of multilingual systems both in contrast to earlier peer studies and

along the evolutionary timeline. Our indings ofer essential knowledge on the multilingual construction in modern software

development. Based on our results, we also provide insights and actionable suggestions for both researchers and developers

of multilingual systems.

CCS Concepts: · Software and its engineering→Maintaining software.

∗Haipeng Cai is the corresponding author.

Authors’ addresses: Wen Li, Washington State University, Washington, 99163, Pullman, USA, li.wen@wsu.edu; Austin Marino, Washington

State University, Washington, 99163, Pullman, USA, austin.marino@wsu.edu; Haoran Yang, Washington State University, Washington,

99163, Pullman, USA, haoran.yang2@wsu.edu; Na Meng, Virginia Tech, Virginia, 24061, Blacksburg, USA, nm8247@vt.edu; Li Li, Monash

University, Clayton, Victoria, 3800, Australia, li.li@monash.edu; Haipeng Cai, Washington State University, Washington, 99163, Pullman,

USA, haipeng.cai@wsu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.

Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from

permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1049-331X/2023/11-ART $15.00

https://doi.org/10.1145/3631967

1

HTTPS://ORCID.ORG/0000-0002-5224-9970
https://orcid.org/0000-0002-5224-9970
https://doi.org/10.1145/3631967
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3631967&domain=pdf&date_stamp=2023-11-06

Additional Key Words and Phrases: Multilingual software, language use, language selection, language proile, functionality

relevance, evolutionary characterization, association mining

1 INTRODUCTION

A number of studies have suggested that software written in multiple languages1 (i.e., multilingual softwareÐas
opposed to single-language software which is developed solely in one language) is prevalent. For instance, 20%
of the 9,997 projects sampled on SourceForge [35] used two languages while 12% of them used three [13]. A
later, industrial report found that most of applications developed by top companies were written in 2 to 15
languages [23]. This is consistent with more recent studies inding that more than half of the randomly sampled
open-source projects on GitHub were developed in two or more languages, despite the largely varying sample
sizes (e.g., 729 [43], 1,150 [33], and 15,000 [44]).

Intuitively, the prevalence and dominance of multilingual software is justiiable given the impetus (e.g., beneits
or even necessity) of using multiple languages in a single software project [1, 49]. Indeed, diferent languages
have their own peculiar strengths and weaknesses [10, 36]. Thus, combining various languages could be a natural
consideration by developers for building software that requires capabilities each best ofered by one of the
selected languages. For example, a web application may use Python, a general-purpose language (GPL), and
HTML, a domain-speciic language (DSL), to combine their productivity and presentation merits, respectively.
Similarly, an IoT software developer may use Java for plug-in development to exploit its portability advantage,
along with C for implementing system-level features to leverage its eiciency advantages. It is also common that
the diferent components of a distributed software system [8, 15], like in Android apps [6, 7], are developed in
diferent languages to beneit from the decoupled design.
So much as the employment of multiple languages reduces software costs and improves software develop-

ment productivity, the multilingual construction paradigm also leaves larger room for quality threats, including
functionality defects and security vulnerabilities [28], in the resulting systems. Intuitively, the more languages
used in a system, the harder the quality issues across diferent language units could be diagnosed efectively.
However, before we focus on developing tool support for multilingual software quality assurance, we must irst
address the basic knowledge gap about how multilingual systems are constructed. The lack of this knowledge
creates immediate barriers for building quality multilingual software. For instance, while developers recognize
the general beneits of using multiple languages in one project, it may not be straightforward for a developer to
make decisions in multilingual software development as regards how many and which languages should be used
given the (e.g., functionality) requirements [34]. These decisions may be particularly challenging yet important
to make given the large [23] and growing [27] number of languages as well as the constant evolution of the
languages (e.g., in their features and capabilities) [45]. In this context, understanding how developers of existing
multilingual software have selected languages, the rationale behind the selection, and the potential changes in
the decision-making over time is a irst yet essential step towards helping future developers deal with similar
decisions and informing language designers about future language design considerations.
The use of programming languages in software development has been studied, concerning the factors that

afect the success of a language [10], the popularity of diferent languages [4, 25, 36, 43], interactions/relationships
(e.g., similarity) across languages [4, 25, 46], as well as evolution of languages in these regards [10, 25]. Relevant
studies also have addressed the efects of language use on the defect-proneness [43], quality risk of the lack of
maintenance [46], and bug resolution characteristics (e.g., bug ix size and time) [50] of the resulting software.
However, these prior studies mainly targeted single-language software, focusing on how individual languages
were used.

1 In this paper, we refer to as ‘languages‘ any computer languages, including but not limited to programming languages.

2

Studies looking at language use in multilingual software do exist, which addressed the prevalence of such
software [34, 44] as well as good/bad practices for various quality factors in developing software [1]. Few of
these studies looked into the possible rationale behind developers’ choice of languages and justiications of
language combinations in multilingual projects [49]. Moreover, several of these studies were based on developers’
perceptions through surveys [1, 34] rather than examining the actual artifacts of multilingual software projects.
Two studies [13, 33] investigated the associations among chosen languages in multilingual software based on
actual project data. Yet, like other peer studies, they did not examine how the language combinations in a
multilingual project may be justiied with respect to development decisions (e.g., functionality category/domain
or project topic). In particular, the more recent study [33] (as performed in 2015) did not apply an evolutionary
perspective but rather considered the dataset (1,150 projects) as one single collection from GitHub. The other
considered the evolution of language use during the years of 2000Ð2005 [13]; since it was conducted over a
decade ago, the relevance of the results might have signiicantly deteriorated.
In this paper, we conduct a large-scale characterization study of multilingual software with a focus on their

multilingual construction in terms of language use and selection (i.e., language proile), sampling those in the
open-source community while taking a longitudinal lens. The goal of our study is three-fold, subsuming three

speciic aims: (1) provide an updated, multifaceted overview of language use and selection in contemporary
multilingual software in terms of overall prevalence, language distributions, and language-combination popularity,
(2) take a deeper look into the functionality relevance of language selection in terms of the quantitative association
between these two factors, and (3) ofer a longitudinal view of (1) and (2) in terms of the evolution of both. The
key motivation is that outcomes of these aims would lead to an understanding of how corresponding multilingual
development decisions have been made, which will inform future decision-making in relevant regards. These
aims and outcomes diferentiate our study from, and make it complement to, previous peer studies on the use
of programming languages. While multilingual software construction concerns many other aspects (e.g., data
model/format, architecture, and human factors), we chose to only study the language selection/use aspect in
order to keep a necessary focus in a single paper.

Around these objectives, our study revealed a range of novel indings about multilingual software construction
as highlighted below.

Overall statistics/characteristics on language use/selection. Among 7,113 projects we sampled, despite the
large number of (296) languages in use as available unique choices, most of the studied multilingual software
projects only used 2 to 5 languages (mean=4.5 and median=3). Similar results were reported earlier [44]
(mean=6 and median=5) and [33] (mean=5 and median=4). We also found that languages widely existed
which were used frequently but only lightly (in terms of the associated code size) in multilingual software
(e.g., shell and cmake), albeit mainstream languages tended to be used both frequently and contribute
signiicantly to the software code size (e.g., c/c++ and javascript). The combinations of these mainstream
languages also tended to be popular for developers (i.e., the top combinations of languages were often
those of top individual languages used). In terms of how the used languages interact with one another,
implicit interfacing (e.g., two languages exchange data via interprocess communication) mechanisms were
used notably more often than explicit ones (e.g., the code of one language explicitly calls a function written
in another language).

Functionality relevance/justiication of language selection. Our study revealed a variable yet generally
strong association between functionality domains and main languages, between main languages and
language interfacing mechanisms, and between the interfacing mechanisms and language selections, which
justiies the overall association between functionality domains and language selections being strong as well,
in the studied multi-language projects; in contrast, prior work only focused on the correlation between
software categories and individual languages [4]. Meanwhile, some language combinations were more

3

strongly associated with certain domains than others. These results ofer a lens to an in-depth understanding
of how languages are selected in multi-language software, an empirical reference for developers when
choosing a typical language combination for a common topic/domain, and potential insights for program
analysis researchers on what language combinations to focus on and analyze.

Evolution of language use and selection. The number of languages and the number of projects usingmultiple
languages have both been increasing every year. This observation brings to light a growing trend in
which developers are choosing to use various combinations of multiple languages to construct software
systems quickly to keep up with increasing demands. Meanwhile, over time, the lists of top individual
languages and top language combinations used in the studied multilingual systems were stable, although
the absolute ranking of top combinations has changed. For speciic software categories, the language
combinations used to implement corresponding kinds of software changed from year to year; yet the
primary language commonly kept stable (e.g., our study indicated that albeit the language combinations
for the category of End-user application changed every year, javascript was consistently included
in the language combinations for constructing software in that domain). In all, over the 10 past years,
some language combinations were more stably associated with certain domains than others, and the
association was generally less stable than that between individual languages and the domains. Moreover,
language interfacing mechanisms had been being adopted in an increasingly diverse manner, signaling the
growing construction complexity of multi-language software; meanwhile, implicit interfacing has generally
maintained a consistent dominance over other language interfacing mechanisms over time during the
studied 10-year span.

We have released all of the source code and data sets used in our study, as found here2 and here3. We will turn
them into archived open data with detailed documentation.

Paper organization. The rest of this paper is structured as follows. We start with our study design in Section 2,
elaborating data collection, iltering, development of study toolkit, and experimental procedures. We then present
our empirical results and major indings in Section 3, followed by an in-depth discussion of the insights and
implications behind our results in Section 4, along with the various threats that may afect the validity of the
results. After that, Section 5 relates our study to relevant prior works, right before we ofer concluding remarks
in Section 6.

2 METHODOLOGY

We irst outline our research questions, which provide the overarching guideline for our study. Next, we describe
our approach to answering these questions, starting with an overview of our study process and followed by
elaborations on the datasets and data analyses used in our study.

2.1 Research uestions

In accordance with our study goal and speciic aims (Section 1), we seek to answer the following three main
research questions, for which the scope, rationale (justiication), and approach are also outlined below.

• RQ1What statistical properties describe the overall characteristics of language use and selection

in multilingual sotware?

Scope. We start with a basic empirical analysis of the overall language use in multilingual software,

including the prevalence of individual languages versus that of various language combinations, as well as
the distribution of languages within and across projects.

2https://www.dropbox.com/s/h515kgfufyi2mr1/Multilanguage_Tool.zip?dl=0
3https://bitbucket.org/wsucailab/multilangstudy/

4

https://www.dropbox.com/s/h515kgfufyi2mr1/Multilanguage_Tool.zip?dl=0
https://bitbucket.org/wsucailab/multilangstudy/
https://www.dropbox.com/s/h515kgfufyi2mr1/Multilanguage_Tool.zip?dl=0
https://bitbucket.org/wsucailab/multilangstudy/

Rationale. These overall statistical properties provide a recent, multifaceted overview about the language
proile as a basic construction characteristic of multilingual software, fulilling the aim (1) of our study. Also,
given the age of closest prior studies and the evolution of languages [45], the general statistical properties
also reveal an updated view of the characteristics of multilingual software regarding language use.
Approach. We started with a random sampling of 10,000 open-source projects on GitHub that has been

active throughout the ive past years (2015 through 2019) and received at least 1,000 stars. This initial
process ended up with 7,113 projects that come with meta data necessary for our empirical analysis (e.g.,
language proile information and meaningful project descriptions). We calculated basic statistics of the
dataset to compute the metrics and measures within the scope of this question (e.g., #languages used
per project, ranking of top language combinations, language distribution in terms of the occurrences of
unique languages and the size of code written in diferent languages, and mechanisms in which the selected
languages interface with each other).

• RQ2How is language selection related to the functionality domain/topic inmultilingual sotware?

Scope.We further characterize multilingual software by examining whether developer decisions in choosing

which languages to use in these software projects may have been associated with the project topic or
software domain in terms of their functionality categories. If such associations exist, we proceed to quantify
the extent.
Rationale. Intuitively, an essential milestone in understanding the practice of multilingual software con-
struction is to understand why developers select the particular languages they choose to use. One avenue
toward the milestone would be to measure the relationship between language selection and functionality
domain/topicÐprior work based on developer opinions suggested that one reason that developers chose to
use diferent languages is their perception that each language ofers the best features for certain functionali-
ties of the software [1, 34]. While such a quantitative analysis as in our study focusing on this single aspect
may not suice for fully answering the why question, studying the functionality relevance of language
selection should be a useful step, which fulills the aim (2) of our study.
Approach. With the same dataset used for RQ1, we computed the functionality topic from the natural-

language project descriptions through topic modeling. We then used the extracted topics to form common
domain names for the studied projects after manual normalization and calibration, following a principled
approach (i.e., inductive and axial coding processes) to label the functionality domain of each project.
Next, we discovered and quantiied the correlation between functionality domains/categories and language
combinations in the (7,113) projects through association rule mining. We also took a deep dive into these
overall associations through the selection of main languages and language interfacing mechanisms, while
examining the efects of non-programming languages (as opposed to programming languages) on the
associations.

• RQ3 How has multilingual sotware evolved in terms of language use and selection?

Scope.We lastly characterize the evolutionary dynamics of multilingual software, via a time-aware empirical

analysis of how the overall language use and the association between language selection and project
functionality category (i.e., the answers to RQ1 and RQ2, respectively) have changed over time.
Rationale. One widely recognized norm of modern software is that in general they constantly evolve.
For multilingual software in particular, it is reasonable to assume that the evolution of language use
and selection plays a signiicant underlying role in the overall evolutionary dynamics of these software
projects. Understanding the dynamics in the past would naturally help make informed decisions for future
multilingual development and language design. For instance, studying how the functionality relevance of
language selection has changed over time can provide insights on the same into the future. In addition,
peer studies in the last decade [4, 33, 43, 50] provide rich insights into the language use in contemporary

5

software development yet without incorporating a longitudinal view, a gap we intend to ill so as to fulill
the aim (3) of our study.
Approach. We randomly sampled GitHub for open-source projects in the 10 past years (2010 through 2019)

and used 1,000 projects for each year in our evolution study. With the per-year datasets, we performed the
same empirical analysis for each year as used on the dataset used for RQ1 and RQ2. We then characterized
the evolutionary traits of multilingual software in terms of language use (e.g., top language combinations and
language distribution), selection (i.e., association between language combination and project functionality
category), and language interfacing mechanisms from the per-year characterization results.

2.2 Study Overview

To answer the above three research questions, we propose an orchestrated characterization study whose overall
process low is depicted in Figure 1. As its primary input, the process takes the Git repositories of open-source
projects on GitHub [17]. From this data source, we mined the repositories of diferent numbers of projects for
two complementary characterization studies. The irst considers all projects to be from a single period (hence
referred to as single-period characterization (SPC)), which aims to answer RQ1 and RQ2 based on the projects
from the ive past years (2015-2019) as a whole. The second characterization considers projects per year (referred
to as evolutionary characterization (EVC)), which aims to answer RQ3 based on projects from each of the 10 past
years (2010-2019) separately.

Repository
Mining

GitHub
Repositories

Repository
Mining

Project Set (2015-2019)

Projects from past
five years as a whole

RQ1

Projects from each of the
past ten years

SPC Results 2010

……
SPC Results 2019

Evolutionary Characterization (EVC)RQ3

Project Set 2010

……
Project Set 2019

Empirical
Analysis

Functionality
Domain

Identification

Association
Analysis

Projects
Topics

Single-Period Characterization (SPC)
RQ2

Fig. 1. Overview of the process flow of our multilingual sotware characterization study.

More speciically, in the SPC study, an empirical analysis is performed to compute basic statistical properties
of the dataset to answer RQ1. This analysis also extracts project topics, from which project functionality domains
(i.e., categories) are identiied through topic modeling. Then, we computed the relationships between the resulting
categories and top language selections via an association analysis to answer RQ2. In particular, we irst look
at the overall association between functionality domain (FD) and language selection (LS), followed by a closer
look into such associations through two key underlying factors of LS in relation to FD: main language (MaL)
and language interfacing mechanism (LIM). The rationale here is that when developers select languages for a
target functionality domain, it is intuitive for them to irst select MaL, then LIM according to the MaL chosen,
and inally the other languages hence the entire language combination (i.e., language selection).

In the EVC study, per-year characterization results are computed irst by running the SPC on the projects from
each year. The resulting per-year SPC results are then used to characterize the evolutionary dynamics of all the
projects across the 10-year span hence answer RQ3.
Next, we elaborate on the two characterizations separately, after describing the common repository mining

step that produced the dataset used for each characterization.

6

2.3 Repository Mining

To obtain the datasets needed for our characterization studies, we retrieved raw project repositories from GitHub
followed by two data processing steps, as described below. These three steps constitute the data collection
procedure that we applied for each project.

Raw repository retrieval.We accessed each original project repository using the GitHub’s Version 3 Python
API [18]. In particular, we retrieved repositories that meet three criteria as listed and justiied below, each
corresponding to a project property speciied when invoking the repository query via the API.

(1) Popularity.We used the property "star" as the popularity indicator of a project as in prior work [38, 43]:
the larger this property’s value, the more popular the project. We only chose projects that had at least
1,000 stars as these projects were considered popular ones [38]. Given the huge number of projects on
GitHub, we intended to focus only on characterizing software that likely represents inluential development
practices, with respect to the goal of our study. While high popularity may not necessarily indicate high
quality, it is reasonable to assume that the more popular projects more likely represent the practices that
have greater inluence.

(2) Creation time.We used the property "created" as the indicator of when the project was created. We only
chose projects that were created in no more than 10 years. The rationale is that a project likely does not
represent contemporary software characteristics if it is too (over 10-years) old. Also, none of our two
characterizations would look beyond the span of 10 past years (2010 through 2019).

(3) Update time. We used the property "pushed" as the indicator of the latest time the project was updated. We
only chose projects that have been updated in the latest six months (relative to July 2022 when we started
sample project crawling). The rationale is that more active projects tend to more likely represent ongoing
software development practices.

While GitHub ofers a valuable source for software data mining, there are multiple perils in conducting studies
based on GitHub mining [24]. For example, most of the projects on GitHub were found inactive. It is for this
reason that we applied multiple selection criteria as described above. But we have additionally applied a basic
ilter in light of another peril: many projects on GitHub are not used for software development activities [24].
Thus, we have skipped repositories that are not for software development projects (e.g., personal/course websites
and tutorials)Ðassisted by automated, conservative checking, we have spent extensive efort to apply this iltering
step. In particular, we manually deined a list of heuristic words that might be indicative of common kinds of
non-software-development projects on GitHub based on our experience (e.g., łtutorial", łcourse", łwebsite", łbook",
and łlist"). We then applied this conservative list to automatically check against project descriptions to obtain a
rough list of potentially non-software-development projects. Lastly, we manually validate each project in this
rough list as software development versus non-software-development projects by reading any documentation
available and the source code as much as necessary.

Mining key project properties. Given a project’s URL, detailed project information can be obtained (using the
GitHub API). Among the over 70 diferent project properties available, most were irrelevant for our current study.
The relevant ones are listed in Table 1.

These four ields contained pertinent information for our study. Accordingly, we set two constraints: (1) a
project must contain at least one valid topic, which should not be just a programming language name; (2) a
project’s description must contain at least 5 characters. These minimal requirements were set to ensure that we
have valid information to derive the project’s functionality category.

Mining language information. Information on the languages used in a project is key to our study. With the
language URL (Field 2 of Table 1) retrieved for a project, the GitHub API enables us to query the detailed language
information for the project. The information we gathered includes the number of languages and the number

7

Table 1. Key project properties retrieved during the sotware project repository mining for our study

No. Field Description

1 id Repository Id

2 language URL the hyperlink for querying the project’s languages

3 topics List of topic tags

4 description Simple description of the project

of bytes written in each language. As an example, the query result for a project was {’css’: 71539, ’html’:

17627, ’javascript’: 992797, ’shell’: 340}. We refer to this information as the language proile of the
project, where the numbers indicate the number of bytes written in each language (referred to as the language
code size of the language). When a project’s proile size (i.e., #languages used) is greater than 1 (i.e., potentially
multi-language project), we detect/classify the interaction between the languages using our multi-language
software characterization tool PolyFax [29]. We only keep the project if is a really multi-language project (i.e.,
there exists an interaction between the languages).

2.4 Single-Period Characterization (SPC)

SPC is the core component of our study process. It takes as input a set of projects without considering any time
information about each project, and then computes basic statistics about these projects as a whole via an empirical

analysis, followed by functionality domain identiication and then an association analysis.

Dataset. We started with randomly sampling 10,000 projects from GitHub that met the basic criteria for our raw
repository retrieval step but limited the creation time to the ive past years. The rationale for this time length is
that through the SPC study we intended to take one sizable, single-period sample from GitHub to characterize the
multilingual software in the sample as a whole, for which ive years represent a reasonable length of period. And
looking at the particular window of the past ive years (2015-2019) ensures the recency of this single sample. From
the 10,000 initial projects, we ruled out those that did not satisfy the two constraints set against the key project
properties (Table 1), which left us 7,113 projects. The data mined from the corresponding 7,113 repositories by
following our data collection procedure (Section 2.3) formed the basis for SPC.

2.4.1 Empirical Analysis. This analysis computes the following measures over the given input project set. The
rationale of computing these measures is that they constitute a basic overview of language use in multilingual
software.

• Average Language Proile Size (ALPS): we irst retrieve per-project language proile sizes (i.e., the number of
languages used in a project), and then compute the mean and standard deviation (stdev) of language proile
sizes across all projects in the given set.

• Language Proile Size Distribution (LPSD): this is the percentage distribution of projects in the given set over
diferent numbers of languages used. For example, if we have a set of 10 projects, of which 3, 5, 2 projects
use 1, 2, 3 languages, respectively, then this measure would be {1: 0.3, 2: 0.5, 3: 0.2}.

• Language Distribution By Frequency/code Size (LDBF/LDBS): we measure the popularity of each language
through two measures: frequency (number of occurrences) and code size (number of bytes). From the
language proile of each project, we compute these measures for all the projects in the given project set.

• Average Language Code size Percentage (ALCP): we irst compute the percentage distribution of code size of
all the languages used in each project from its language proile. For example, given a language proile {’c#’:
569869, ’javascript’: 198348, ’shell’: 317}, the distribution is {’c#’: 0.74, ’javascript’:

8

0.25, ’shell’: 0.01}. Then, by averaging these percentage distributions over all projects in the given
set, we compute the ALCP per language for the project set.

• Top Language Combinations (TLCO): we compute the top combinations from the given project set according
to the number of occurrences of each combination. Yet we only consider mainstream languages which
have the greatest inluence on the functionality of software [4, 43], given that the number of language
combinations is an exponential of the number of unique languages.

• Language Interfacing Mechanisms (LIM): Intuitively, looking at the structure of a multi-language software
project helps understand the construction of the software. And we believe the most essential and unique
aspect of this structure, as opposed to that of single-language software, is the language interfacing mecha-
nism. Hence, examining the association between language selection and language interfacing mechanism
ofers a useful angle into the rationale of language selection/use in multi-language software. To that end, we
compute the language interfacing mechanisms for the studied projects with our multi-language software
characterization tool PolyFax [29]. PolyFax classiies the LIM of a given project into four categories: Foreign
Function Invocation (FFI)Ðone language provides a foreign function interface to match its semantics and call-
ing conventions with those of another language, IMplicit Invocation (IMI)Ðone language interacts implicitly
with another language via interprocess communication (IPC), EmBoDiment (EBD)Ðthe involved languages
interact via one embodying the other, and Hidden InTeraction (HIT)Ðthere are no any code-level evidence
of connection, even implicit ones, between the languages; the interaction is often realized through external
data sharing. More detailed descriptions about these interfacing mechanisms can be found in relevant
earlier works [28, 29]. In this study, we only consider the interfacing between mainstream languages as
in the TLCO computation for the same reason (i.e., the reason why we only considered the mainstream
languages in computing that metric).

2.4.2 Functionality Domain Identification. To examine the functionality relevance of language use (as one way
to justify language selection) in multilingual software, we needed to identify the functionality domain of each
project. To that end, we categorized the studied projects based on their functional features through inductive and
axial coding analysis [12, 37]. In the inductive coding, we manually labeled a set of randomly sampled projects as
per their corresponding non-code artifacts (i.e., README, project description, and topics) and collected a set of
codes identiied during the manual analysis, hence forming a codebook. Then, in axial coding, we categorized the
studied projects by functionality domains according to the codebook derived (i.e., labeling each project with one
of the codes that best represents its primary functionality domain).
Speciically, our manual analysis for project functionality domain categorization includes two main steps,

codebook creation and project categorization, as elaborated below.

(1) Codebook creation. For our study, the codebook is a set of rules that deines how to assign a speciic code to
a project. To create this codebook, we randomly selected 1,500 projects, a sample size that was statistically
signiicant at a 95% conidence level (CL) and 5% margin of error (ME). The sampled projects’ documents
were then analyzed by three of the authors to create and iteratively reine the codebook, addressing
disagreements through meetings/discussions until reaching a consensus. Speciically, each project was
evaluated by the authors via (1) carefully reading its documents, (2) checking if it it into an existing
category, and (3) creating a new category for those that did not it into any existing categories.

To create a new category, the authors irst deined a label for it and then created a detailed description of
the category. To aid in labeling future projects, the authors also summarized the descriptions of projects of
that category as typical examples.
The result of this analysis was a codebook that consisted of 20 codes, along with their summary

descriptions, which are presented in Table 2. The codebook has two levels of categorization: level 0

9

encodes the codes corresponding to the diferent layers of the common software stack, ranging from drivers
to end-user applications, while level 1 is coded to cover the diverse kinds of application software.
It is important to note that a well-designed codebook plays a critical role in ensuring consistency and

accuracy in coding the projects. This consistency allows for comparing and analyzing the functionality
domains of the studied projects.

(2) Project categorization. Based on the codebook, the ive authors analyzed and coded the entire set of the
studied projects. During the coding process, some projects were assigned multiple labels as they were
related to diferent functionality domains. Furthermore, we employed negotiated agreement to address
the reliability of coding [9]. As a result, a project was only categorized when all of the authors reached a
consensus (through discussion/meetings if disagreement arose initially). A summary of the categorization
results, concerning the overall distribution of projects in the SPC dataset over diferent functionality
domains, is presented in Table 3.

Table 2. Codes used to categorize functionality domains of projects

id Level Category Description

1 0 driver a software component connecting the operating system and hard-
ware devices

2 0 system the interface between hardware and user applications

3 0 programming tools for software development (e.g., programming, build)

4 0 middleware software providing services to applications beyond those available
in the OS

5 0 application library libraries providing data and functions to other client applications

6 0 end-user application applications providing data and functions to end users

7 1 word process software for manipulating and designing text

8 1 database software for creating, editing, and maintaining database iles and
records

9 1 spreadsheet software for capturing, displaying, and manipulating data arranged
in rows and columns

10 1 multimedia software for playing, recording or editing audio/video iles

11 1 presentation software for creating a presentation of ideas via texts, images, and/or
audios/videos

12 1 enterprise an integral part of an information system for organizations

13 1 information worker software for users (individuals) to create and manage information

14 1 communication software for passing information from one entity to another

15 1 education software for educational purposes

16 1 simulation software modeling a real phenomenon with a set of mathematical
formulas

17 1 content access software for accessing content without editing

18 1 application suite a group of diferent but inter-related software applications

19 1 email software for using electronic mail

20 1 engineering/developmentintegrated software systems supporting development tasks

2.4.3 Association Analysis. As noted earlier, we aim to understand the process and rationale of language selection
in multi-language software construction from the perspective of functionality domains. The motivation is that

10

Table 3. Distribution of projects in SPC over functionality domains, with both levels considered but only notable (>1%) ones

shown

Software functionality domain Percentage of projects in SPC

end-user application 28.67%

application libraries 14.38%

middleware 13.34%

content access 8.75%

engineering/development 6.11%

education 5.16%

database 4.30%

programming 3.82%

multimedia 2.94%

word process 2.82%

system 2.10%

communication 1.60%

email 1.57%

presentation 1.13%

application suites 1.07%

practically diferent language combinations are chosen typically in relation towhat kind/category of functionalities
is targeted by the software project. Thus, we compute the association between such categories and language
combinations over the studied projects. In addition, to dissect these associations and understand their presence
and strength, we further decompose them through in-depth examination of (1) how the functionality domains
(FD) are associated with the main languages (MaL) selectedÐthe motivation is that intuitively developers would
start language selection with choosing the main languages (i.e., the primary languages to use), which are usually
mainstream programming languages as we consistently observed in both of our SPC and EVC datasets, (2) how
the main languages are further associated with language interfacing mechanisms (LIM)Ðthe motivation is that
once the main languages are selected, the next necessary step is to consider how those main languages would
interface with other languages (i.e., which interfacing mechanisms are suitable for the chosen main languages)Ð
also, the selection of such interfacing mechanisms is indeed an integral part of the holistic language selection
process, and inally (3) how the language interfacing mechanisms are eventually associated with language
combinations/selections (LS)Ðthe motivation is that the choice of language interfacing mechanism, given the
main languages chosen, immediately afects the choice of other languages in the ultimate language selection. In
short, we dissect the overall association between FD and LS through a series of analyses of the association along
the following chain: FD→MaL→LIM→LS.
Accordingly, after we obtained/computed the relevant properties (i.e., FD, MaL, LIM, and LS) of each project,

we conducted four kinds of association analysis: (1) Overall association between FD and LS, (2) Association between

FD and MaL, (3) Association between FD and LIM, and (4) Association between MaL and LIM.
Speciically, for any of these kinds of association analysis, we followed an association rule mining process

against the given project set. In particular, we identify frequent if-then associations which consist of an antecedent
(if, e.g., FD here) and a consequent (then, e.g., LS here), using the Apriori algorithm [41] implemented in the
Mlxtend library [42]. This association rule mining process consists of the following three general steps:

(a) Data formatting. We represent the inputs as a data frame where one column stores the antecedent variable
while the other stores the consequent variable.

11

(b) 1-hot encoding. We transform the data frame as follows: irst, form all unique data items (i.e., words) in the
data frame as a set of size n; then, each cell of the data frame is encoded as n bits by setting each item of
the cell as 1 if it is in that set, followed by zero padding.

(c) Association computation.With the encoded data frame, we irst calculate the support for each row, and then
obtain the association rules (i.e., the if-then association matrix) for the given project set.

For the four kinds of association analysis, in (1)ś(3), we consider FD as the variable antecedent and others as
the variable consequents, while in (4) MaL is considered the variable antecedent and LIM the variable consequent.

2.5 Evolutionary Characterization (EVC)

As shown in Figure 1, for the per-year project sets as inputs, the EVC works by irst computing the per-year
SPC results. Then, the EVC examines the evolutionary dynamics of multilingual software based on what the
SPC results inform about, in terms of the six statistics listed in Table 4. Each of these statistics indicates an
evolutionary characteristic we focused on in our EVC.

Table 4. Evolutionary characteristics we focused on in EVC

No. Statistics

1 number of unique languages (language diversity)

2 percentage (prevalence) of multilingual projects

3 language proile size distribution (LPSD)

4 average language code size percentage (ALCP)

5 top language combinations (TLCO)

6 functionality relevance of language use

7 language interfacing mechanisms (LIM)

The rationale of focusing on these particular statistics in the EVC is that the irst ive ofer an intuitive
evolutionary overview of language use while the last would reveal how the deeper look into the correlation
between functionality domain/topc and language selection have changed over the years. This is in line with the
goal and corresponding speciic aims of our study.

Datasets. For EVC, we need multiple yearly datasets each for one of the years within our targeted historyÐthe 10
past years (2010-2019). To that end, we crawled GitHub extensively and obtained 1,000 projects for each year that
met all the criteria (i.e, popularity, creation time, update time) and constraints (i.e., valid topic, valid description) as
we set for the repository mining step (Section 2.3). We also aimed to ensure that there is no overlap between any
two yearly datasets, for which we considered a project belonging to a speciic year only when its last update time
is within that year and it is not a fork [33] of another project.
In order to get 1,000 projects per year, we randomly sampled a greater number of projects for that year.

Speciically, for each year, we (1) randomly sampled more (than 1,000) projects, (2) dismissed those that failed
to satisfy any of the criteria/constraints/requirements stated above, and repeated (1) and (2) until we had 1,000
projects left.
We believe that 10 years represent a reasonably long span for anticipating that multi-language software

potentially undergoes noticeable changes in language use and selection. Thus, a span of this length should be
suitable for a study with a focus on an evolutionary angle. And 1,000 projects can be considered a sizable dataset
for each year. Another reason for choosing 1,000 as the per-year dataset size was that it was more diicult to get
a lot more projects from earlier years that met all the criteria/constraints/requirements on GitHub.

12

2.6 Language Scoping

As a hindsight, we found that there are nearly 300 unique languages used throughout the projects in our
study datasets. The sheer total of combinations among this large set of languages turned out to be even more
overwhelming. For the ease of presentation and the need to enable in-depth investigation towards our study
aims, we have to prioritize and be more focused instead of trying to report results about all the languages and
their combinations in one single paper.

Therefore, for the rest of the paper, whenever holistic language proiles/selections are involved (e.g., language
proile prevalence for RQ1 and associations with language selections for RQ2), we consider those consisting of
some in the top 50 languages according to language popularity seen in our datasetsÐthe popularity of a language
is measured as the percentage of all of the studied projects that use that language. These 50 languages include
both programming languages (e.g., Python and Java) and non-programming languages (e.g., CSS and HTML).

Moreover, given the consistently primary roles played by programming languages in all of our studied projectsÐ
compared to those of non-programming languages according to the percentage of entire project code size that is
attributed to individual languages, the associations computed for RQ2 and RQ3 would be intuitively diferent
between considering all of the 50 languages and considering programming languages only. Thus, we separately
examined those associations for the top 20 programming languages (among the top 50) only. To determine whether
a language is a programming language or not, we referred to the Github Language Stats [16].

For brevity, hereafter, we refer to the top 50 languages when we note that all languages are considered, and we
refer to the top 20 programming languages when we note that only programming languages are considered.

3 RESULTS

In this section, we present and discuss main results and indings obtained according to our study methodology as
answers to our research questions.

3.1 RQ1: Language Use/Selection Overview

We start with a basic empirical analysis of the overall language use in multilingual software, including the
prevalence of various language selections and the signiicance of each selected language in a language proile.
Speciically, we aimed to understand the language use in terms of the size and composition of language proiles
of the studied projects. Again, given that the total number of language selections is an exponential of the number
of unique languages, we focus on the combinations of mainstream languages as they have the greatest inluence
on software quality and functionality as in prior work [4, 43].
As we deined earlier, the overview of language use and selection in multilingual software consists of ive

measures (Section 2.4.1). We report the measurement results for these measures below.

3.1.1 Language Profile Size. We examine the language proile size in terms of its average and distribution (i.e.,
ALPS/LPSD). Figure 2 depicts the percentage distribution of the 7,113 projects studied (y axis) over diferent
language proile sizes (x axis). Size one was included here to (1) assess the prevalence of multilingual projects
overall and (2) make our results more comparable to those of prior peer studies which commonly included
single-language projects also when reporting language proile size statistics. We did not diferentiate languages
of diferent types (e.g., GPL versus DSL) in order to assess the entire language proiles in multilingual software.
Across these 7,113 projects, 296 unique languages were used, including the well-known languages such as

c, c++, java, python, and javascript and some unusual/much less known ones such as renderscript, hcl,
processing, mako, tcl, plsql, xs, gap, qmake, meson, angelscript, zenscript, and hlslÐthe full list can be
found in our artifact. The average language proile size was 4.5 (median 3, stdev 4.8). Excluding a few outlier
projects that used more (up to 149) languages, the maximum proile size was 9. The majority (over 75%) of our
subject projects used more than 2 languages, while 25% of all used 5 or more languages. There appears to be

13

Fig. 2. Distribution of language profile sizes in SPC.

a long tail in the chart because we chose to cover the entire range of proile sizes whereas there were only a
tiny/negligible portion of projects that have a proile size greater than 9. Also, the proile sizes are not continuous
after 35 (e.g., there were no projects in our datasets with proile sizes of 36, 42, between 44 and 50, between 52
and 64, between 66 and 77, between 79 and 87, or between 89 and 148). And there were no more than 3 projects
having a proile size greater than 25. Our inspection revealed that, in those outlier projects (proile size above 9),
the majority of the language units are parallel/alternative to each other in terms of functionalitiesÐfor example,
demonstrating the implementation of the same function (e.g., a Hello-World program) in diferent languages
and providing the capabilities (e.g., syntax highlighting) for (hence in) diferent languages. That is, most of the
languages in these outlier projects do not interact with each otherÐper our prioritization as described earlier
(Section 2.6), these outlier projects were not eventually part of our results for RQ2 or RQ3.

All in all, these numbers show that the studied subjects did not use a very large number of languages in one
project, despite the large variety of (296) language choices available. The results are generally close to those from
recent peer studies in GitHub (e.g., mean and median language proile size of 6 and 5 in one study [44], and of
5 and 4 in another study [33], respectively). On the other hand, the proile sizes tend to be considerably larger
in our study than as reported a decade ago in an average case: according to [13], back during 2000-2005, over
90% of the studied projects (albeit from a diferent sourceÐSourceForge [35]) used no more than 2 languages.
Meanwhile, the largest (outlier) language proiles were much smaller ive years or longer ago (e.g., up to 36 [33]
or 52 [44] languages in one project) than now (149).

Despite the large number of (296) languages in use, most of the studied multi-language software projects only used

2 to 5 languages (mean=4.5), similar to what were reported over ive years ago but noticeably larger than a decade

back.

3.1.2 Language Prevalence. After looking at the size of language proiles, we now look inside and across the
proiles to examine language distribution by frequency/code size (LDBF/LDBS). Figure 3 shows how frequently
diferent languages were used in the studied multilingual software, where the x axis lists the top-30 most
frequently used languages and the y axis indicates the frequency. For instance, objective-c was used in 10%
(versus html in almost 40%) of our projects.

Our results show that languages such as shell, javascript, python, java, c, and c++were the most popularly
used languages in the studied multilingual projects. These are not drastically diferent from what prior studies
found about popular languages, whether in single-language projects (e.g., java and javascript were growing
in popularity and python was staying popular [13]) or multilingual ones (e.g., javascript and c/c++ were the
top two most frequently used languages [33]).

14

Pe
rc

en
ta

ge
 o

f p
ro

je
ct

s (
fre

qu
en

cy
)

0%

10%

20%

30%

40%

50%

sh
ell

java
sc

rip
t

htm
l

cs
s

pyth
on

make
file c

ruby
c+

+
java

dock
erfil

e

batch
file php

objecti
ve

-c

cm
ake go

perl c# roff

typ
esc

rip
t

m4

powersh
ell

tsq
l

ass
embly

sw
ift lua

vim
 sc

rip
t

co
ffe

esc
rip

t
sc

ala xs
lt

Language used

Fig. 3. Language distribution by frequency across all language profiles in SPC.

Yet neither c nor c++ has dropped out the top list as yet despite there were found to decline in popularity over
15 years ago [13]. Also, the greatest frequency of use (as high as 45%) of shell over other languages has not
been reported before (e.g., previous studies found that the most popular language was xml [25] or c [4]). This
prominent popularity of shell in multilingual software may be partly attributed to its good interoperability with
other languages [4].
Intuitively, higher (lower) frequency of use of a language may not always indicate a greater (lower) extent

of use of the language in terms of the language code size. For example, a language may be used commonly but
mostly only for writing very little code. Indeed, in contrast to the frequency results of Figure 3, Figure 4 reveals
that the most popularly used languages (e.g., shell and javascript) were not exactly the ones in which most of
the software code was written (e.g, c and c++). Here the y axis shows the percentage of code size attributed to
each language (listed on the x axis) across all the 7,113 projects (i.e., treating all these projects as one project).
Note that language code sizes here can be largely afected by the nature/type of diferent languages (e.g., code of a
certain number of lines/bytes in higher-level languages would be written in much more lines/bytes in lower-level
ones). Nevertheless, the contrast still suggests that neither frequency nor code size alone can fully characterize
language use extent in multilingual software. An earlier study [4] found that c, javascript, and c++ were top 3
languages in terms of lines of code written in various languages. That is quite similar to our inding here.

Pe
rc

en
ta

ge
 o

f c
od

e
si

ze
 o

ve
r a

ll
pr

oj
ec

ts

0%

5%

10%

15%

20%

25%

c
c+

+
java c#

java
sc

rip
t

pyth
on

htm
l

php go
ruby

typ
esc

rip
t

objecti
ve

-c

jupyte
r

ass
embly tsq

l
cs

s
sc

ala
sh

ell
perl

llv
m
oca

ml
roff

make
file rust

mathemat
ko

tlin
vis

ual
lua

groovy

cm
ake

Language used

Fig. 4. Language distribution by code size across all language profiles in SPC.

15

Meanwhile, despite the diferences in measurement results between frequency and code size, we also observed
that some languages were among the dominant ones in terms of both measures (e.g., javascript, c, c++, python,
and java). These languages are all mainstream programming languages in modern software development in
general [36, 43, 50].

Popular individual languages used in multilingual systems were not quite diferent from those in single-language

software, but the languages of prevalent use were not necessarily used extensively (in terms of language code size)

across the studied projects.

3.1.3 Language Significance. In light of the results of Figures 3 and 4 on the LDBF/LDBS measures, we extrapolate
that languages within a language proile were not evenly signiicantly used in terms of the code size of each
constituent language. To validate this hypothesis, we examine the signiicance of language use in average language
proiles in terms of the average language code size percentage (ALCP). Figure 5 shows what percentage of code
(bytes) was written in each language within a project (i.e., a language proile) in an average case. The languages
are listed on the x axis in the same order as that of Figure 4 to facilitate contrasting between these two results.
Thus, as opposed to LDBS measuring the percentage of the total amount of code of all the (7,133) projects in
diferent languages, this igure characterizes the average contribution (in terms of code size) of diferent languages
in multilingual projectsÐthe diferences in the total code sizes of diferent projects were thus considered. For
instance, on average 32% of the code in a project was written in c among the projects whose language proile
included c, while among the projects that used go over 70% of the code in each project was written in go on
average. The bases (denominators) from which the averages were computed may not be the same since a language
was not necessarily used in every project. Thus, the result should be interpreted together with the frequency of
each language among all the (7,133) projects (Figure 3).

0%

10%

20%

30%

40%

50%

60%

70%

80%

P
e
rc
e
n
ta
g
e

 o
f c
o
d
e

 si
ze

 o
f o

n
e

 la
n
g
u
a
g
e

 p
ro
fi
le

a
tt
ri
b
u
te
d

 to
 a

 la
n
g
u
a
g
e

Language selected (i.e., included in the language profile)

mean standard deviation

Fig. 5. Average code size percentage atributed to diferent languages in SPC.

As shown, some languages (e.g., go, rust, php, java, and c#) contributed to more than half of the code of
a project when the project used them. In contrast, certain languages (e.g., perl, html, css, and cmake) only
contributed minimally to the projects they participated in. Considering the frequency of these languages, the
contrast reveals that quite a few languages were widely adopted in multilingual software development but only
used very lightly (e.g., shell). This can be explained by the intuitive observation that those languages (e.g.,

16

makefile) were best for certain functionalities that are commonly needed (e.g., project building) but not much
code is needed for such functionalities (e.g., a few lines of shell commands for building a project).

Languages widely existed which were used frequently but only lightly in the studied multilingual software (e.g.,

shell and cmake), albeit mainstream programming languages tended to be used both frequently and contributed

signiicantly to the software code size (e.g., c/c++ and javascript).

3.1.4 Language Profile Prevalence. Our another perspective into language use/selection concerned the prevalence
of language proiles, for which we examine the top (most frequently used) language combinations (TLCO) with
all languages considered.

Table 5. Top language combinations in SPC

Rank Language Combination %Occurrences

1 css-html-javascript 10.4%

2 c-c++-shell 4.8%

3 python-shell 3.6%

4 javascript-typescript 3.1%

5 html-python 2.7%

6 html-ruby 2.4%

7 css-html-javascript-python 2.3%

8 javascript-python 2.2%

9 css-html-javascript-shell 1.9%

10 css-html-javascript-ruby 1.9%

11 c-python 1.9%

12 html-javascript-python 1.8%

13 html-java 1.8%

14 makefile-python 1.6%

15 html-php 1.6%

16 objective-c-ruby 1.5%

17 go-shell 1.5%

18 c++-java-shell 1.5%

19 javascript-php 1.5%

20 css-html-javascript-php 1.4%

21 objective-c-ruby-swift 1.4%

22 javascript-shell 1.4%

23 java-shell 1.4%

24 c-c++-python 1.4%

25 html-javascript-java-c 1.4%

26 c-c++-cmake 1.4%

27 css-javascript-php 1.3%

28 java-javascript 1.3%

29 css-html-javascript-python-shell 1.3%

30 c++-python 1.2%

17

Table 5 lists the top-30 most frequently appeared language combinations in the language proiles of the
multilingual projects studied in SPC. Intuitively, languages css, html, and javascript were most widely used
together, as found earlier [44], plausibly because of the popularity of Web and mobile applications in recent
yearsÐthese languages were indeed common choices for such applications. This suggests that in the era of mobile
Internet, front-end applications are a point of interest for most multilingual software developers. In relation
to that, combinations of languages c, c++, shell, and python were also relatively popular, likely due to the
popularity of back-end services which were commonly developed using these languages. Bissyande et al. [4]
found that javascript, shell and ruby appeared to be most used together (having the best interoperability)
with other languages, which is consistent with what we found here.

In light of other earlier studies, our results also indicate certain shifts of language selection preferences and
dominating language proiles in multilingual software construction. For example, java-xml and java-sql were
found to be the most common language pairs [34], which is related to another prior inding that java and xml

iles were the top dominating co-evolving code units [25]. And c and perl were most commonly used together
for Web development [13].

Top popular language combinations tended to be the combinations of top popular individual languages used in the

studied multilingual software projects.

3.1.5 Language Interfacing Mechanisms. Our inal perspective on language use/selection concerned how the
languages selected interact with each other. For each project, we used PolyFax [29] to detect all of the interfacing
mechanisms among the top language selections (i.e., those among the top-30 list of Table 5). The tool may return
hybrid mechanisms (i.e., multiple interfacing mechanisms) for a single project if its top language selections
do involve diferent interfacing mechanisms. This is reasonable because a project can indeed involve multiple
functionality domains.

As shown in Table 6, eight types of LIMs (including single and hybrid mechanisms) were discovered to be used
across the projects in the SPC dataset. Implicit interfacing (IMI) was the most prevalent among all LIMs, with
69% of projects utilizing it. In contrast, only 7% of the projects used an explicit interfacing via foreign function
invocation (FFI). This may be due in part to the fact that only a limited number of language pairs support FFI
between the top languages. Speciically, of the 66 pairs of top 12 languages analyzed in our study, only 30% were
found to support interaction via FFI. As a result, indirect interaction is frequently the only feasible option for
most language pairs, such as javascript-python. Additionally, indirect interaction reduces coupling between
language components and is relatively straightforward to implement using a mature communication framework.
For example, popular languages such as c, python, java, and ruby can easily communicate with one another
through gRPC [21] in any setting.

Aside from FFI and IMI, inter-dependence (EBD) is another signiicant category, mostly found in projects that
use the language selection javascript-css-html. This trend relects the common usage of both general-purpose
programming languages (GPLs) and domain-speciic languages (DSLs) [34].

Implicit interfacing (IMI) was dominantly used over explicit mechanisms such as FFI (e.g., JNI). A signiicant

portion (43.57%) of the projects used hybrid interfacing mechanisms, mostly including IMI or FFI.

3.2 RQ2: Functionality Relevance of Language Selection

We examined whether, and quantiied how, developer decisions in choosing which languages to use in the studied
software projects are associated with their functionality domains in terms of the project topics. Speciically, we
irst computed an overall associations between functionality domains and language selections. Then, to achieve a

18

Table 6. Distribution of LIM over the SPC dataset

LIM Percentage

IMI_EBD 22.04%

FFI_IMI 20.14%

IMI 25.72%

EBD 12.17%

FFI 7.04%

HIT 11.49%

FFI_IMI_EBD 1.03%

FFI_EBD 0.36%

deeper understanding of the functionality relevance of language selection, we look into the hidden connections
under those associations (i.e., underlying associations) with respect to language interfacing mechanisms, a crucial
and unique (relative to single-language software) factor in multilingual software construction, hence the total
of four kinds of associations as described in Section 2.4.3. By default, we computed these associations with all

languages considered; to examine the efects of non-programming languages, we additionally examined the
underlying associations with non-programming languages excluded (i.e., focusing on programming languages
only). Concerning the functionality domains in these association analyses, we consider level-0 and level-1 domains
(as listed in Table 2) separately. We further characterized the evolution of such associations, as described later in
Section 3.3.

3.2.1 Overall Associations. Tables 7 and 8 list the results of our association analysis on the overall functionality
relevance of language selection using the SPC dataset in terms of level-0 and level-1 functionality domains,
respectively. The selections shown are part of the top language selection ranking obtained for RQ1. For each
pair of (software domain, language combination), the support indicates how frequently the pair appears in the
dataset, and the conidence indicates the conditional probability of the occurrence of the language selection given
the domain. We only report the pairs for which support≥1% and conidence≥50%. These two thresholds were
determined empirically with respect to our SPC dataset: continuing to lower these thresholds would not produce
more pairs of at least weak association [22] (i.e., lift≥1). The strength of association is indicated by the lift factor:
lift<1 indicates the selection and domain are mutually exclusive; lift==1 indicates no association; and lift>1
indicates the selection and domain are associated, with a greater lift value for a stronger association.

Our results revealed that there is a generally quite notable tie between language selection and the functionality
domains examined, although the association was relatively weaker (e.g., between css-html-javascript-php

and middleware as well as between c-c++-cmake and end-user application at level 0 as shown in Table 7) in
a few cases than others (e.g., between css-html-javascript and multimedia at level 1 as shown in Table 8).
Overall, with half (3) of the level-0 and half (7) of the level-1 domains, there were strongly associated language
selections.

More particularly, when considering the domains at level 0 only, the majority of the positive associations are
with applications (e.g., application library or end-user application). Also, for a speciic domain, language
selections tend to be somewhat diverseÐmultiple selections are associated with one domain. For example, to
develop end-user applications, some may select php-shell while others may choose java-kotlin or objective
c-ruby-swift. One possible reason is software of the same domain is naturally developed with diferent language
combinations when in diferent software ecosystem or on diferent platforms (e.g., apps on Android often use java
or kotlin and other languages while the apps of same functionality domains on iOS use objective c and swift

19

Table 7. Association between level-0 functionality domains and top language combinations in SPC with all languages

considered

Functionality Domain Top Language Selection Support Conidience Lift

application library css-javascript-php 2.20% 7.11% 1.51

middleware c-c++-python 1.66% 12.65% 1.41

end-user application php-shell 1.50% 2.98% 1.39

end-user application css-html-ruby 1.82% 3.62% 1.38

application library css-html-javascript 8.80% 28.42% 1.33

end-user application css-html-javascript 1.89% 14.56% 1.29

end-user application java-kotlin 1.02% 2.02% 1.18

application library objective c-ruby-swift 1.72% 5.55% 1.10

middleware css-html-javascript-php 3.59% 27.35% 1.03

middleware css-html-javascript-python 3.38% 25.71% 1.01

end-user application c-c++-cmake 3.97% 7.88% 1.01

Table 8. Association between level-1 functionality domains and top language combinations in SPC with all languages

considered

Functionality Domain Top Language Selection Support Conidience Lift

simulation go-shell 1.28% 7.95% 3.24

multimedia css-html-javascript 1.28% 48.00% 2.59

multimedia css-html-javascript-php 1.38% 52.00% 2.19

multimedia css-html-javascript-ruby 1.38% 52.00% 2.18

multimedia css-html-javascript-python 1.28% 48.00% 2.10

simulation makefile-python-shell 1.92% 11.92% 1.90

application suites css-html-javascript-ruby 1.49% 45.16% 1.89

engineering/development c-c++-cmake 3.83% 14.63% 1.86

spreadsheet css-html-javascript 1.70% 30.19% 1.63

spreadsheet css-html-javascript-php 1.92% 33.96% 1.43

spreadsheet css-html-javascript-ruby 1.92% 33.96% 1.42

engineering/development html-javascript-typescript 3.83% 14.63% 1.37

spreadsheet css-html-javascript-python 1.70% 30.19% 1.32

engineering/development objective c-ruby-swift 1.49% 5.69% 1.27

communication css-html-javascript-python 2.66% 28.74% 1.26

engineering/development html-javascript-python 2.56% 9.76% 1.19

email css-html-javascript-php 3.30% 25.41% 1.07

application suites css-html-javascript-python-shell 1.28% 38.71% 1.07

communication css-html-javascript-ruby 2.34% 25.29% 1.06

email c-c++-cmake 1.06% 8.20% 1.04

more often). For the other (i.e., non-application) domain, middleware, developers tend to select c-c++-python
or languages (e.g., php and python) combined with css-html-javascript.

20

Regarding the domains at level 1 (i.e., speciic kinds of end-user applications), multimedia is strongly associated
with languages combined with css-html-javascriptÐthis kind of language selection is also popularly seen
in constructing other kinds of end-user applications, such as spreadsheet, communication, and email. These
associations indicate that the language selection css-html-javascript is most widely used in developing
application software. Referring to the results in Table 7, we note that end-user application is strongly
associated with css-html-javascript, indicating a consistency in the association analysis results between the
two levels of functionality domains we examined.
On the other hand, between the two functionality domain levels, the associations at level-1 are generally

stronger. This is because when we look at the higher-level (level-0) domains, the greater diversity of language
selections within each domain (compared to the lesser diversity within each domain at the lower level, i.e., level
1) tend to make the association with a particular language selection relatively weaker.

Language selection was considerably relevant to the functionality domain in multilingual software construction,

and some language combinations were more strongly associated with certain functionality domains than others.

3.2.2 Underlying Associations. To further mine the hidden connections (as potential interpretations) underlying
the overall associations identiied in Section 3.2.1, we progressively computed associations between FD and MaL,
then between MaL and LIM, and inally between LIM and LS. In this way, we may potentially understand why
functionality domains are associated with some speciic language selections along this association chain. We
then separately look at this association chain with programming languages considered only to further assess
how non-programming languages may have impacted the functionality relevance of language selection. Given
the generally stronger associations with functionality domains at level 1, to avoid verbosity of this paper we will
only report results on the association chain with respect to level-1 domains.

With all languages considered. Table 9 shows the associations between FD and MaL, Table 10 shows the

associations between MaL and LIM, and Table 11 shows the associations between LIM and SL.
As summarized in Table 9, most of (8 out of the total of 14) the level-1 functionality domains were found

positively associated with one or more main languages. For instance, the simulation domain is associated with
four main languages shell, go, java, and python, while the engineering/development domain is associated with
c++, c, php, and c#. That is, the main languages associated with a functionality domain can also be diverse,
consistent with the diversity in this regard seen in the overall associations between functionality domains and
language selections.

Further along the association chain, we found substantive associations between the main language and language
interfacing mechanisms, as shown in Table 10. Speciically, main languages c and c++ are both strongly associated
with the interfacing mechanisms involving FFI (i.e., FFI, FFI_IMI, and FFI_IMI_EBD). One reason is that current
mainstream languages all have FFI interfacing with c/c++ [28]. For example, python interacts with c through
Python extension, java interacts with c through JNI, and go interacts with c via cgo. As a result, most of the main
languages (which are also mainstream languages) listed in the table are found associated with FFI or interfacing
mechanisms involving FFI.
Finally, between language interfacing mechanisms and language selections, we also found generally quite

strong associations, as listed in Table 11. For instance, FFI is associated with c-c++, while FFI_IMI is associated
with c-c++-python, c-c++-objective c, c-python, and so on. These associations are also consistent with the
results of Table 10, where the main languages are always part of language selections shown in Table 11.

Overall, along the holistic association chain, the results on overall associations are generally quite well aligned
with, hence explained/justiied by, the corresponding results on underlying associations. To illustrate, let us
consider the simulation domain. From Table 8, we see that one of strongly associated language selections with

21

this domain is makefile-python-shell. To understand how this overall association came about rationally, let us
follow the association chain as follows. First, from Table 9, we can see the most strongly associated main language
with simulation applications is shell. Then, from Table 10, we notice that the interfacing mechanism most
strongly associated with shell is IMI. Finally, as shown in Table 10, we see that IMI is strongly associated with
the language selection makefile-python-shell. In this way, the overall association between the simulation
domain and the makefile-python-shell selection is justiied by the illustrated chain of underlying associations.
More generally, from a developer’s perspective, given a functionality domain targeted along with a speciic

software ecosystem concerned with, selecting the main language can be the crucial irst step during the mul-
tilingual software construction process. For example, to develop a communication application, python can be
a good choice as the main language, as shown in Table 9. Then, the developer can try to ind languages that
work well with the main language to satisfy the development requirements. In this step, the language interfacing
mechanism is a primary decision factor since the interfacing is knowingly associated with the quality (e.g.,
security in terms of vulnerability proneness) of multilingual software [28]. Following the example, if the devel-
oper chose the interfacing of IMI to construct the software, then according to Table 11, the language selection
css-html-javascript-python can be a good choice since it is widely used in this domain. Moreover, the domain
of communication is also associated with css-html-javascript-python as shown in Table 8. Alternatively, the
developer could choose other language selections associated with IMI that include python (e.g., c++-python).

Table 9. Association between (level-1) functionality domains and main languages in SPC with all languages considered

Functionality Domain Main Language Support Conidience Lift

simulation shell 1.32% 7.80% 2.72

multimedia javascript 1.03% 47.37% 2.13

end user application javascript 2.12% 38.95% 1.75

simulation go 1.49% 8.81% 1.60

email c 1.09% 9.22% 1.58

communication python 1.32% 13.22% 1.51

engineering/development c++ 2.80% 10.10% 1.51

spreadsheet javascript 1.89% 33.33% 1.50

engineering/development c 2.35% 8.45% 1.45

engineering/development php 2.75% 9.90% 1.20

word process java 1.03% 12.41% 1.20

engineering/development c# 1.26% 4.54% 1.18

communication java 1.14% 11.49% 1.11

email php 1.03% 8.74% 1.06

simulation java 1.83% 10.85% 1.05

simulation python 1.49% 8.81% 1.01

With only programming languages considered. Table 12 shows associations between FD and MaL, Table 13

shows associations between MaL and LIM, and Table 14 shows associations between LIM and SL, with non-
programming languages dismissed.
Like those with all languages considered, the underlying associations computed with only programming

languages considered are similarly strong, supporting generally similar conclusions as well. One major diference
is that EBD as an interfacing mechanism is now absent in the underlying associations of Table 14. The reason is

22

Table 10. Association between main languages and language interfacing mechanisms in SPC with all languages considered

Main Language Language Interfacing Type Support Conidience Lift

css EBD 1.31% 55.56% 4.56

html EBD 1.33% 34.74% 2.85

c++ FFI 1.59% 19.90% 2.82

shell IMI 1.13% 69.14% 2.69

c FFI 1.49% 18.18% 2.58

php HIT 1.67% 29.64% 2.57

java FFI 1.37% 15.63% 2.22

javascript EBD 6.06% 26.76% 2.20

ruby HIT 1.41% 23.49% 2.04

go IMI 1.93% 48.98% 1.91

html FFI_EBD 1.39% 36.32% 1.85

c FFI_IMI 7.65% 93.37% 1.77

c++ FFI_IMI 7.29% 91.18% 1.73

python IMI 5.23% 41.47% 1.61

css IMI_EBD 2.27% 96.58% 1.61

typescript IMI_EBD 1.93% 96.00% 1.60

javascript IMI_EBD 21.60% 95.38% 1.59

shell FFI_IMI 1.31% 80.25% 1.52

java FFI_IMI 6.96% 79.54% 1.50

python FFI 1.31% 10.37% 1.47

go FFI_IMI 3.00% 76.02% 1.44

html IMI_EBD 3.28% 85.79% 1.43

shell IMI_EBD 1.37% 83.95% 1.40

javascript FFI_EBD 6.20% 27.38% 1.40

ruby IMI 2.09% 34.90% 1.36

python FFI_IMI 9.00% 71.29% 1.35

ruby IMI_EBD 4.27% 71.14% 1.19

javascript FFI_IMI_EBD 22.34% 98.67% 1.12

php IMI_EBD 3.72% 66.07% 1.10

css FFI_IMI_EBD 2.29% 97.44% 1.10

c# IMI_EBD 1.13% 65.88% 1.10

typescript FFI_IMI_EBD 1.95% 97.00% 1.10

shell FFI_IMI_EBD 1.57% 96.30% 1.09

c FFI_IMI_EBD 7.87% 96.07% 1.09

html FFI_IMI_EBD 3.64% 95.26% 1.08

c++ FFI_IMI_EBD 7.59% 94.96% 1.07

c# FFI_IMI_EBD 1.59% 92.94% 1.05

java FFI_IMI_EBD 8.11% 92.64% 1.05

c++ FFI_EBD 1.63% 20.40% 1.04

python FFI_IMI_EBD 11.25% 89.15% 1.01

23

Table 11. Association between language interfacing mechanisms and language selections in SPC with all languages considered

Language Interfacing Type Language Selection Support Conidience Lift

FFI c-c++ 1.34% 20.69% 4.97

IMI javascript-shell 1.59% 6.43% 3.54

EBD html-javascript 2.54% 17.40% 3.08

EBD css-javascript 1.26% 8.60% 3.05

IMI makefile-python-shell 1.12% 4.51% 2.83

EBD css-html-javascript 4.50% 30.78% 2.76

EBD javascript-typescript 1.17% 8.03% 2.66

FFI_IMI c-c++-python 2.51% 5.30% 2.09

FFI_IMI c-c++-objective c 1.26% 2.65% 2.06

FFI_IMI c-python 2.23% 4.71% 2.03

IMI java-shell 1.12% 4.51% 1.92

FFI_IMI makefile-python-shell 1.42% 3.01% 1.89

FFI_EBD css-html-javascript 4.50% 21.07% 1.89

FFI_IMI javascript-shell 1.62% 3.42% 1.88

FFI_IMI c++-python 1.34% 2.83% 1.88

FFI_EBD javascript-typescript 1.17% 5.50% 1.82

IMI javascript-typescript 1.28% 5.19% 1.72

FFI_IMI java-javascript 1.42% 3.01% 1.52

IMI_EBD css-html-javascript-ruby 2.79% 4.32% 1.47

IMI css-html-javascript-python 2.07% 3.20% 1.40

that this interfacing mechanism is commonly applicable between non-programming languages (e.g., CSS and
html)Ðthus, the relevant data samples were iltered out prior to the association analysis.

With either all or only programming languages considered, underlying associations along the chain of {FD→MaL,

MaL→LIM, LIM→SL} are strong and consistent with, hence explaining/justifying, the respective overall associa-

tions.

3.2.3 Case Studies. To gain more insights into the association, we randomly chose 10 popular (i.e., having
received 1800+ stars) and mature (i.e., having been 6+ years old) projects from all Music Software projects in
our SPC dataset and manually gained understanding about the functionalities of modules in diferent languages.
We chose Music Software as a subcategory in multimedia, a random sample of the functionality domains
represented in our study datasets, which is also one of the major level-1 domains (Table 2) that covers a non-trivial
portion of our sample projects (Table 3). This software functionality category has also seen projects that use
a variety of languages and language combinations. Table 15 shows these projects and the top languages used
in each project in terms of the size of code written in each language. We found that javascript and python

were used most frequently in these projects and selected together in three cases (boldfaced). Meanwhile, not
every music software used them and most of the projects did not select both. This is consistent with our result
indicating that the association between Music Software and javascript-python is relatively weak (hence not
listed in Table 8).

Looking further into the three cases, we found that the core functionalities (i.e., accounting for 85%+ of project
code) are implemented in python, consistently for features such as resource (e.g., songs and lyrics) search and

24

Table 12. Association between (level-1) functionality domains and main languages in SPC with only programming languages

considered

Functionality Domain Main Languages Support Conidience Lift

simulation shell 1.32% 7.80% 2.72

multimedia javascript 1.03% 47.37% 2.13

end user application javascript 2.12% 38.95% 1.75

simulation go 1.49% 8.81% 1.60

email c 1.09% 9.22% 1.58

communication python 1.32% 13.22% 1.51

engineering/development c++ 2.80% 10.10% 1.51

spreadsheet javascript 1.89% 33.33% 1.50

engineering/development c 2.35% 8.45% 1.45

engineering/development php 2.75% 9.90% 1.20

word process java 1.03% 12.41% 1.20

engineering/development c# 1.26% 4.54% 1.18

communication java 1.14% 11.49% 1.11

email php 1.03% 8.74% 1.06

simulation java 1.83% 10.85% 1.05

simulation python 1.49% 8.81% 1.01

Table 13. Association betweenmain languages and language interfacingmechanisms in SPCwith only programming languages

considered

Main Language Language Interfacing Types Support Conidience Lift

c++ FFI 1.59% 19.90% 2.82

shell IMI 1.13% 69.14% 2.69

c FFI 1.49% 18.18% 2.58

php HIT 1.67% 29.64% 2.57

java FFI 1.37% 15.63% 2.22

ruby HIT 1.41% 23.49% 2.04

go IMI 1.93% 48.98% 1.91

c FFI_IMI 7.65% 93.37% 1.77

c++ FFI_IMI 7.29% 91.18% 1.73

python IMI 5.23% 41.47% 1.61

shell FFI_IMI 1.31% 80.25% 1.52

java FFI_IMI 6.96% 79.54% 1.50

python FFI 1.31% 10.37% 1.47

go FFI_IMI 3.00% 76.02% 1.44

ruby IMI 2.09% 34.90% 1.36

python FFI_IMI 9.00% 71.29% 1.35

25

Table 14. Association between language interfacing mechanisms and language selections in SPC with only programming

languages considered

Language Interfacing Type Language Selection Support Conidience Lift

HIT ruby-swift 1.81% 21.67% 8.85

FFI c-c++ 1.78% 20.65% 7.81

IMI c-shell 1.22% 4.37% 2.49

IMI go-shell 2.28% 8.14% 2.40

IMI ruby-shell 2.50% 8.94% 2.35

IMI python-shell 5.59% 19.96% 2.31

IMI php-shell 1.47% 5.26% 2.28

FFI_IMI c-c++-python 1.50% 2.46% 1.63

FFI_IMI c-c++-java-python-shell 1.53% 2.50% 1.63

FFI_IMI c-c++-python-shell 5.90% 9.64% 1.59

FFI_IMI c-c++-shell 3.62% 5.91% 1.59

FFI_IMI c-c++ 2.50% 4.09% 1.55

FFI_IMI c-python-shell 1.70% 2.77% 1.53

IMI java-shell 1.53% 5.46% 1.51

FFI_IMI c-c++-javascript-python-shell 2.17% 3.55% 1.50

HIT python-shell 1.06% 12.67% 1.47

FFI python-shell 1.08% 12.58% 1.46

FFI_IMI java-c-shell 3.17% 5.18% 1.43

IMI javascript-shell 2.67% 9.53% 1.22

FFI_IMI c++-ruby-shell 2.61% 4.27% 1.12

downloads. The remaining functionalities are mostly implemented in javascript, consistently for features such
as music play and metadata viewing via web browsing, as a Web UI or a Web plug-in. This inding suggests that
the association we observed is justiiable: the language selection appeared to be justiied by the features the
selected languages can best ofer together for the targeted functionalities.
In relation to prior peer studies, although the functionality relevance of language choices was looked at

before [4], prior studies focused on how functionality domains were connected to individual languages rather
than the selection of multiple languages as a whole. We also recall that in practice there are usually many factors
(e.g., language features, software functional requirements, and developer expertise/preferences) that may afect
the eventual choices of language proiles. In our study, we did not attempt to fully answer the question of why
certain language combinations are chosen over others; instead, our goal is to shed light on the justiiable relevance
of functionality categories of multilingual software to its language proile.

The association between language selection and functionality domain was justiiable by the collective features of

selected languages better facilitating the functionality requirements.

3.3 RQ3: Evolution of Multilingual Systems

In this section, we present the results of our Evolutionary Characterization (EVC) study, reporting the evolutionary
characteristics on both overall language use/selection and their functionality relevance as outlined in Table 4. We
irst look at the evolution of language use/selection (for which an overall characterization was given for RQ1),

26

Table 15. Case studies on the functionality relevance of language selection: 10 cases for the Music Software domain

Project #Stars:Age(#years) Top Languages

iScript 4738:6 python javascript

KodExplorer 4715:7 php html javascript css

Soundnode 4660:6 javascript html css

Cmus 3853:8 c c++ shell python

Headphones 2937:9 python html javascript css

Lmms 4181:6 c++ objective-c cmake html

Scdl 1800:6 python

Tomahawk 2644:10 c++ cmake javascript

Vexlow 2760:10 javascript html shell

Beets 9525:10 python javascript shell

followed by examining the evolution of the association between language selection and functionality domains
(for which an overall characterization was given for RQ2).

3.3.1 Evolution of Language Use/Selection. We found that the diversity of languages had grown continuously, as
depicted in Figure 6. In less than a decade, the number of unique languages used across our 10 yearly datasets
nearly quadrupled: from 35 in 2010 to 138 in 2019. This result clearly indicated that multilingual software
developers had increasing lexibilities and choices in language use and selection for system construction. The
monotonic nature of the trend that has sustained for 10 years projects a likely continuing growth of language
diversity (at least in the open-source community).

0

20

40

60

80

100

120

140

160

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

N
u
m
b
e
r o

f u
n
iq
u
e

 la
n
g
u
a
g
e
s

Year

Fig. 6. Evolution of language diversity (#unique languages used year to year).

Plausibly a result of the growing language choices, we also observed a steady uptrend in the prevalence of
multilingual software construction. Figure 7 delineates the percentage of projects that were developed in 2 or
more languages in each of our 10 yearly EVC datasets. For instance, in 2010, 41% of the 1,000 sampled projects
were written in multiple languages, while in 2019 this percentage grew to 74%. This inding resonates with results
from a prior study [13] that showed a similar growth of multilingual software prevalence: the percentage of
projects using multiple languages increased from 10% to 35% from year 2000 to year 2005 (albeit on a diferent
open-source software repository portal SourceForge). Put together, that earlier study and ours here revealed
constant growth of the prevalence of the multilingual software construction practice. By now, multilingual

27

construction has become a deinite norm and clearly dominated over single-language development in modern
software practice, so far as our studied projects were concerned with.

0%

10%

20%

30%

40%

50%

60%

70%

80%

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

P
re
v
a
le
n
ce

 (%
 m

u
lt
il
in
g
u
a
l p
ro
je
ct
s)

Year

Fig. 7. Evolution of multilingual sotware prevalence (% multilingual projects year to year).

In the 10-year span examined, both the language diversity and multilingual software prevalence grew steadily,

and multilingual construction has become a dominating norm in modern software development as seen in the

studied projects.

Complementary to the overall growth of language diversity and multilingual software prevalence, we now
examine what has changed in individual projects (language proiles). Figure 8 shows the evolution of language
proile size distribution among the studied subjects, where various sizes are encoded with gradual color depth
and the height of each single-color bar indicates the percentage of projects having the associated proile size. The
results show 3, 4, and 5 as sizes of the fastest growing popularity, consistent with our overall proile size statistics
(e.g., mean 4.5); meanwhile, the trend also indicates general decreases in projects using less languages.

Fig. 8. Evolution of language profile size distribution.

Looking into the proile composition, we found that the top languages used (e.g., java, python, and javascript)
remained almost constant over time. Figure 9 shows the percentage of projects (y axis) from each of the 10 years
(x axis) in our EVC study that used each of these top languages. Our results show that the use (proile inclusion)
frequency of almost all of the contemporary mainstream languages was fairly stable (or slightly up in a few cases
such as javascript and java). One exception was ruby, whose popularity dropped considerably (by 15% in

28

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

P
e
rc
e
n
ta
g
e

 o
f p

ro
je
ct
s u

si
n
g

 a
 la
n
g
u
a
g
e

Year

shell

c#

c++

java

php

c

objective‐c

python

javascript

ruby

Fig. 9. Evolution of top individual languages used.

terms of the portion of projects using it). Nevertheless, the languages that are mostly known as highly popular
sustained a strong and unwavering presence in the language proiles of the studied multilingual systems.
In terms of language combinations in the studied projects (i.e., language proiles), we found the list of top

ones was also pretty stable, yet the order has had clear shifts, as Figure 10 shows. The most noticeable were
the growth in python shell and python c/c++, and the reduction in javascript ruby and c objective-c.
These trends can be explained by the evolution of the popularity of constituent languages (e.g., uptrend in python

and downtrend in ruby) and the interoperability between languages (e.g., friendly interface of shell with other
languages). Again, the top/mainstream individual languages included in these top combinations did not change
much over the years and were consistent with the results of Figure 9.

Fig. 10. Evolution of top (10) language combinations.

Over the 10 past years, increasingly more projects used 3ś5 languages; both the list of top individual languages

used and the list of top language combinations selected were stable (even more so with the former list), albeit the

ranking of top combinations has shifted considerably.

3.3.2 Evolution of Language Interfacing Mechanisms. Figure 11 depicts the distribution of multilingual software
over various kinds of language interfacing mechanisms for each of the yearly datasets in our EVC characterization.
Together, these yearly results present a view of how this distribution has evolved from the year of 2010 through
2019. Overall, there has been a clear increase in the diversity of interfacing mechanisms used in multilingual

29

software construction. The number of diferent kinds of mechanisms was 4 in 2010, which has gone up to 8 by
2019. And the diversity increased monotonically over the years, relecting the growing complexity of multilingual
software construction. For instance, in earlier years (e.g., 2010 and 2011), most (around 70%) of the projects in
each year primarily used relatively straightforward interfacing mechanisms such as FFI, IMI, or both. This growth
appears to be aligned with the increase in the number of multilingual projects that have increasingly greater
language proile sizes shown in Figure 8Ðwith a greater number and variety of languages being selected in
constructing a single multi-language software project, there are naturally increasingly more and diverse language
interfacing mechanisms adopted in the construction.

Fig. 11. Evolution of language interfacing type distribution.

On the other hand, we observed some consistency/stability in the use of interfacing mechanisms during this
10-year span. For instance, IMI has always been the most popular interfacing mechanism used in multilingual
construction, either exclusively or in conjunction with other mechanisms such as FFI and/or EBD. In fact, in any
given year, more than 60% of the projects used IMI. This constant dominance can be justiied by the merit of IMI in
reducing the coupling between diferent language units (because IMI features indirect/implicit interaction which
implies low coupling), as well as facilitating software extensibility in terms of including additional language units
for new functional features (again because of the lexibility IMI ofers). Such merits are particularly signiicant as
modern software construction has gone increasingly multilingual and polyglot-ism has become the norm [28].
Considering the evolution of language combinations as shown in Table 10, we observed that language selections
such as python-shell, javascript-python, and java-shell have been increasingly dominant. This trend helps
justify the growing dominance of IMI in the evolution of language interfacing mechanism distribution as shown
in Figure 11 because in these language selections the languages are commonly interfaced via the IMI mechanism.

Over the 10 years examined, increasingly diverse language interfacing mechanisms have been used in multilingual

construction. On the other hand, IMI has been consistently dominant over interfacing mechanisms.

3.3.3 Evolution of Functionality Relevance of Language Use/Selection . As a result of the random sampling process
underlying our collection of the EVC dataset, the set of functionality domains as categorized with our approach
(Section 2.4.2) varied from one year to another. Also, from some of the domains, there may not be any positively
associated language selection for any of the years studied. Thus, we focus on functionality domains in common

30

across the 10 per-year domain sets that have at least one positively associated language selection for at least one
of the 10 years and refer to such domains as common domains.

With all languages considered.When all languages were considered, there were ive common functionality

domains, as shown in (the leftmost column of) Figure 12. To facilitate visual pattern discovery, we visualize
the association evolution for these common domains as follows: (1) the legend shows the set of languages
most frequently included in the top language selections in the EVC dataset; (2) for each domain and year, these
languages are mapped to ixed colors and cell positions4 to help observe evolution patterns, and each row of
cells represents one language selection. For instance, in 2014 the most frequently adopted language combination
for Application library was c-c++-objective c-ruby, while one year later for the same functionality
domain the dominating language selection was css-html-javascript-shell. As a partial elaboration of the
visualization, Table 16 lists one of the language selections associated with each of the ive domains (irst row) for
each year (irst column), to illustrate how to observe the evolution pattern. As in the visualization, the order of
languages in each language selection is not relevant.
Overall, our evolutionary characterization on the association between language selection and functionality

domain indicates that the association has shifted over the 10 past years. For each individual functionality domain,
the language selections associated with it changed constantly from year to year. Meanwhile, no selection was
always associated with a domain, although some associations were relatively stabler than others. For instance,
c-objective c-ruby was associated with Middleware only in 2011, the association of css-javascript-ruby
with End-user Application stayed the same for three yearsÐ2014, 2015, and 2016, while objective c-ruby

has remained associated with Engineering/development for four consecutive years.
On the other hand, looking at subsets of selected languages, we observed that there appeared to be some stable

members in the language selections associated with each domain. For instance, javascript was selected in
End-user Application projects in all the 10 years, although the other languages it joined changed (e.g., python
in 2010 but ruby in 2012 and 2013). Another instance is c selected in Engineering/development projects for six
years. We noticed that these stable members are individual languages known to be widely used in the respective
functionality domains Ðfor example, java and objective-c for mobile (Android and iOS, respectively) apps, as
well as those that are recognized for their high portability and user-friendliness (i.e., ease to program with) .

Table 16. One example language selection associated with each of the functionality domains (first row) shared among the

yearly datasets in EVC for each of the 10 years (first column), with all languages consideredÐserving as a partial elaboration

of the visualization of Figure 12

Year Middleware Application library End-user Application Education Engineering/development

2010 -- c-c++-python-shell javascript-python javascript-ruby c-c++-java

2011 c-objective c-ruby c-c++-objective c-shell javascript-python-ruby javascript-ruby c-c++-java

2012 c-c++-objective c c-c++-objective c-shell javascript-ruby coffeescript-javascript-ruby c-c++-shell

2013 c-c++-python-shell c-c++-objective c javascript-ruby javascript-ruby-shell assembly-c-c++

2014 css-javascript-ruby-shell c-c++-objective c-ruby css-javascript-ruby css-javascript-ruby c-c++-python

2015 css-html-javascript css-html-javascript-shell css-javascript-ruby css-html-javascript objective c-ruby

2016 css-html-javascript-java -- css-javascript-ruby css-html-javascript objective c-ruby

2017 css-html-javascript-php objective c-ruby-swift css-javascript-php css-html-javascript-ruby objective c-ruby

2018 css-html-javascript-php -- css-javascript-php css-html-javascript-ruby objective c-ruby

2019 -- -- html-javascript-python css-html-javascript c-c++-python

4This is attempted at best efort but cannot be always enforced due to (1) the considerable variations in language selections associated with

diferent domains across diferent years and (2) the large number of individual languages that need to be presentedÐthus, the box enclosing

the language selections for each domain at each year would be too wide if we strictly enforce mapping each language to a ixed cell position.

31

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Middleware

Application

library

End-user

application

Education

Engineering/

development

Fig. 12. Evolution of the associations between language selections and common functionality domains over the 10-year span

studied, with all languages considered.

Over time, language selections were less stable than individual languages in association with functionality domains

of the studied multilingual projects, although some selections were more stable for certain domains than others.

With only programming languages considered. To further understand the evolution of the associations

between functionality domain and language selection, we examined the potential efects of non-programming
languages on the evolutionary dynamics. To that end, we characterized the evolution of those associations with
only programming languages considered, as visualized in Figure 13 following the same format as Figure 12.
With respect to what a common domain means as deined above, we found six common domains across the

10 yearly sets of sample projects when we only considered programming languages in language selections. In
addition to the ive observed when all languages were considered (i.e., in Figure 12), another common domain,
Content access, also has fairly strong associations with some (programming) language selections in most of
the (8 out of 10) years.

Similar to the patterns shown in Figure 12, given a speciic functionality domain, although language selections
also constantly changed over the years, some individual/constituent languages are stably present in the language
selections throughout the evolution. For example, in Application library projects, c++ and shellwere always
selected in all the nine years in which any strong association was successfully found. As another example, in
the Engineering/development domain, the sampled multi-language projects constantly selected c and c++ for
every single year during the studied 10-year span. Also, more holistically, there was also at least one stably
associated language selection (as opposed to individual languages) for every one of the six common domains.
In particular, with both Middleware and Application library, shell-python-c++-c was strongly associated
for 6 years (2010, 2011, 2013, 2015, 2016, and 2019); with End-user application, javascript-ruby-shell was
strongly associated for 5 years (2010, 2012, 2013, 2015, and 2018); with Education, javascript-ruby-pythonwas
strongly associated for 3 years (2010, 2011, and 2012); with Content access, shell-python-javascript-c++

32

was strongly associated for 6 years (2012, 2013, 2014, 2015, 2017, and 2019); and with Engineering/development,
shell-c++-python was strong associated for 5 years (2015, 2016, 2017, 2018, and 2019).

These statistics revealed that developers did seem to have preferred particular languages and language selections
for constructing multi-language software projects in a particular functionality domain.

On the other hand, for each of the (ive) domains shared between Figure 13 and Figure 12, the associated language
selections changed in most cases; in fact, the language selections in the former (Figure 13) were not often a subset
of the respective ones in the latter (Figure 12). The reason is that the language selections changed for each project
after the elimination of non-programming languages, causing variations in the language selection distributions
hence the positive/strong associations. The overall patterns and evolutionary characteristics, however, are not
quite diferent between these two igures.

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Middleware

Application

library

End-user

application

Education

Engineering/

development

Content

access

Fig. 13. Evolution of the associations between language selections and common functionality domains over the 10-year span

studied, with only programming languages considered.

When only considering programming languages, the associations between functionality domains and language

selections evolved generally similarly (i.e., in terms of main evolutionary characteristics regarding what changed

constantly and what were more stable) to those with all languages considered.

3.3.4 Evolution of Functionality Relevance of Language Interfacing. Now that we have looked at the evolution of
language interfacing mechanisms (Figure 11) and the evolution of how functionality domains are associated with
language selections (Figure 12), it is naturally helpful to see next how the associations between functionality
domains and language interfacing mechanisms have evolved. The rationale is twofold. First, these mechanisms are
an essential, unique/deining (relative to single-language software) aspect of multilingual software construction.
Second, the interfacing mechanism of a language selection is clearly a key underlying property of that language
selection.

Again we focus on the results for common domains: i.e., the functionality domains that are in common among
the 10 yearly sets of sample projects and that each has at least one positively/strongly associated language

33

interfacing mechanism (including mixed/hybrid ones such as FFI_EBD) for at least one of the 10 years. As shown
in Figure 14, we found eight such common domains.
Overall, similar to the associations between functionality domains and language selections, for any given

year, there were multiple speciic domains that were strongly associated with one or more language interfacing
mechanisms; in fact, for almost every year, the majority of these common domains had at least one strongly
associated interfacing mechanism. This observation revealed that developers did generally choose diferent
preferred interfacing mechanisms for constructing multilingual software of diferent functionality domains
regardless of the change of time, although the preferences also changed over timeÐfor any of these common
domains.
In particular, it is worth noting that for most of these domains, combining two or three individual language

interfacing mechanisms (LIMs) was a dominant practice in multilingual software construction, especially since
the year of 2013. The sheer number of strongly associated LIM choices also grew over the years. For instance, in
the domain of End-user application, the LIM choices consist in IMI_EBD, IMI, and HIT during 2010 through
2012. In 2013 and later years, the number of associated LIM choices rose up to 5. Note that these results are
pretty consistent with those observed in Figure 12. For instance, prior to 2013, the primary language choices
for End-user application multi-language projects were javascript and ruby, which is consistent with the
observation that IMI was the dominant interfacing mechanism (standalone or mixed with one or two other
mechanisms) before 2013 because javascript and ruby are mostly commonly interfaced via IMIÐjavascript
is used for constructing front-end code while ruby for back-end construction. Starting in 2014, the language
choices became notably diversiied (e.g., with java, objective-c, and php becoming popular choices), leading
to the growing diversity of the interfacing mechanisms adopted.

Overall, during the 10-year span studied, multilingual software construction has been featured with growing
diversity of LIM choices, and with fewer and fewer multi-language projects only adopting one single LIMÐmost
of the associated LIM choices are mixed LIMs. And the most popular mixture scheme was to combine two or three
single LIMsÐin fact, we have not found any project combining more than three single LIMs. This observation is
consistent with the rising adoption of mixed LIMs along with the growing diversity of such LIMs as observed in
the general evolution of LIMs shown in Figure 11. This trend, seen in any of the eight common functionality
domains, indicates the growing complexity of multilingual software construction, with more language choices
available and diversifying ways in which multiple languages interact with each other, generally in any software
(functionality) domain.

Multilingual software construction, irrespective of the targeted functionality domain, has been constantly fea-

tured with having certain strongly-associated language interfacing mechanisms, which have been increasingly

hybrid/mixed and diverse, indicating growing complexity of multilingual software construction over time.

4 DISCUSSION

In this section, we systematize our study results across the three research questions and distill further insights
into the construction of modern multilingual software systems from our empirical results. Based on these insights
and results, we provide actionable suggestions on multilingual software development and research. We also
discuss threats to the validity of our results and other limitations of our study.

4.1 Systematization and Implications of Results

Our study results revealed some of the notable practice in modern multilingual software construction concerning
frequent/popular individual language choices and language combinations, the ways in which languages interact
with each other, and the functionality considerations in relation to language use and selection. These results

34

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Middleware

Application
library

End-user

application

Database

Engineering/
development

Education

Content
access

Application
suites

Fig. 14. Evolution of the association between language interfacing types and common functionality domains.

have implications to various stakeholders of multilingual systems, including relevant researchers and software
developers.

4.1.1 Relevant to Sotware Developers. Despite the rising popularity of the multilingual software construction
practice, we do not claim or suggest that developers should all move to multilingual development. In fact, there is
still a signiicant portion (e.g., 18% as shown in Figure 2) of software projects in our study dataset developed in
one single language. Also, note that the overall growth in the popularity of multilingual software construction
has been gradual, especially in the recent past years (as shown in Figure 7). Thus, it is reasonably expected
that the conventional practice of using a single language (e.g., c, java, python, and javascript) for software
development will continue to stay for years to come.
Nevertheless, the continuously growing and increasingly dominating prevalence of multilingual software

among software projects (at least in the open-source world) as seen in our study (Section 3.3.1) implied the
well-recognized merits of combining the beneits of multiple languages in modern software development. For this
reason, we believe that the adoption of multilingual construction can be considered a viable option to developers
thinking about language selection/use for their future projects. Adding a language to the development does not
necessarily mean a need for writing a signiicant amount of code in that language, according to our results on
language distribution (Figure 4) and signiicance by language code size (Figure 5). Thus, the choice of multilingual
construction may not imply an increase in workload and software development costs. Our results show that some
language choices, especially scripting languages such as shell and declarative languages such as make/cmake, are
used quite frequently in multilingual construction, yet they only contribute minimally in terms of code sizeÐfrom
an experiential point of view, these languages could be considered when multilingual developers make decisions
on (expanding) language selection. Moreover, the evolution of associations between software domains and
language selections/interfacing mechanisms also suggests that combining multiple languages through certain
interfacing mechanisms is becoming popular (Figures 12ś14). For instance, objective c-ruby has been a

35

steadily common language selection for Engineering/development software development, with which FFI has
been chosen as a primary interfacing mechanism.

By the same token, developers who are proicient with one language only may potentially consider to add the
ability to program with more languages to their skill sets, so that they can leverage the beneits of multilingual
software construction and/or more efectively contribute to a collaborative multilingual project. Now that
the increasing majority of open-source software projects adopted the practice of multilingual construction
(Figure 2), those developers should equip themselves with according skills if they aim to become a signiicant
contributors to the open-source community. In particular, Figure 3, together with Figure 9 and Table 5, suggests
that these additional languages that developers may want to choose mainly include shell, css, html, ruby,
swift, objective c, typescript, and make/cmake.

More speciically, whenmaking decisions on language choices, we suggest developers may (1) start with
the high-level functionality requirements of their target software project and accordingly, choose the main
language that often served for the functionality domain as evidenced historically (e.g., using Table 12 as a
reference). For instance, php and c are common choices here for email applications, while go and python have
been often selected to start with for developing simulation software. Then (2) based on the main language
selected, developers can choose language interfacing mechanisms to decide how to construct the software
regarding the connection between diferent language units. For example, FFI usually brings high performance
but also high couplings due to the intra-process invocations with it; in contrast, IMI helps decouple diferent
language units through inter-process communication, leading to lower coupling but also relatively lower
performance. Finally, (3) with the main language and speciic language interfacing mechanism chosen, developers
can select the rest of the eventual language selection for code implementation. As demonstrated in our results, the
strong associations between main languages and language interfacing mechanisms and those between language
interfacing mechanisms and language selections justify/explain associations between respective functionality
domains and the associated language selections. For instance, after choosing javascript as the main language
for a spreadsheet development project (according to Table 9), the developer would choose IMI as the interfacing
mechanism according to how javascript typically interoperates with other languages, hence choosing the rest
of language selection, css and html, based on the common association between these languages and IMI given
that javascript is already chosen. Those domains have been shown to be well supported by the associated
language combinations in the past and are likely to (albeit not necessarily) remain so in the future. Intuitively, for
a particular domain, one reason that some language selections may be more preferable to others is because that
each of the selected languages is known to best suit part of the common functionalities of the domain.
We also found that for a given domain the associated language combinations were not unique. This gives

developers leeway in making the choices of languages, allowing for preferences in other regards (e.g., familiarity
with certain languages). Importantly, our evolutionary characterization revealed that some subsets of languages
stood the test of time, showing a strong and persistent presence in language combinations associated with certain
functionality domains (Figure 12). We thus particularly suggest developers to begin with those stable subsets of
languages associated with the target functionality domains (e.g., css-html-javascript for the development of
Education software) and then choose other secondary, cooperating languages.
Similarly, in terms of choosing individual languages for multilingual construction, for some speciic func-

tionality domains (e.g., mobile application) there was not a particular language that was always considered a
must (i.e., always associated with the domain). Yet there appeared to be a primary language commonly associated
with implementing certain kinds of functionalities (e.g., javascript for End-user application and c for
Engineering/development), despite the variations in the companion languages. Thus, it would be a reason-
able/viable option for developers to consider including these primary languages in their language selection if
they target the respective, associated functionality domains given the historical successes in using the languages
for those kinds of functionalities.

36

Our results revealed some highly signiicant (in terms of code size attribution) individual languages although
they may not be used as frequently as others. These languages include c, c++, java, c#, javascript, and python,
which are all well-known mainstream programming languagesÐa signiicant portion of multilingual software
code is written in these languages due to their rich language features and the strong support (e.g., third-party
libraries and developer tools) available in the respective ecosystems. On the other hand, some individual languages
were highly frequently used in a variety of domains. These languages include shell, makefile, hmtl, and css,
due to their great usability and lexibilityÐa few dozens of lines of code in these languages often suice for the
assistive purposes they serve (e.g., system maintenance/DevOps and data transfer across heterogeneous system
components). Again, these historically popular choices can be a good reference for developers to make language
use/selection decisions.
When it comes to deciding on the holistic set of languages for a project, our results revealed some quite

strong co-occurrences between certain domains and the associated language selections. Thus, multilingual
developers can immediately refer to such frequent associations to make decisisons on language selection once
they have nailed down the target software domain of the project. In particular, css-javascript-php has been
a solid option for developing application libraries, likely due to the fact (at least in our studied projects) that
these libraries often serve for Web applications, for which Web languages (css, javascripts, php, etc.) are
widely known to be used together often. For middleware development, c-c++-python has been most frequently
selected plausibly due to the well-known merits of c and c++ for low-level system implementation and the
complementary merits of python in dealing with user interactions and system conigurations.

With End-user applications, various language combinations have been shown to have statistically strong
associations, including php-shell, css-html-ruby, and java-kotlin, among othersÐthe diversity of choices
here are partly due to the diversity of end-user applications: indeed, our level-1 domain categorization is focused
on breaking down end-user applications (into 14 categories). Thus, to start with, developers may want to irst
nail down the speciic category of end-user application they are targeting, and then refer to our indings (Table 8)
on which language selections were strongly associated with each (level-1) category. For instance, the go-shell
combination could be a good starting point to consider for simulation software given the super strong association
between them; another frequent choice in this domain was makefile-python-shell. It turns out that most
of the multimedia applications (in our dataset) are Web applications; thus, all the past frequently associated
language selections included css-html-javascript.

As we discussed earlier, an intermediate step and key factor during the language selection decision making is to
decide on the language interfacing mechanisms after the main languages are nailed down (e.g., which interfacing
mechanisms are suitable for or compatible with the selected main language). Our results revealed some strong
historical preferences of language interfacing mechanisms for speciic main languages. For instance, FFI had a solid
bond with c++, c, java, and python, which is unsurprising because these most popular mainstream programming
languages enjoyed the availability of dedicated support for interfacing with other languages through FFI (e.g.,
JNI for c to interact with Java and ctypes for c to interact with python). As another example, languages such
as shell and go most frequently interfaced with other languages via IMI, which is also a well-known practice
(e.g., the shell code invokes other language units through pipes or other inter-process communication (IPC)
channels, which all fall in the category of IMI).
Finally, the choices of the main languages and language interfacing mechanisms intuitively afect the inal

set of languages to useÐthe remaining languages have to be interoperable with the main language via the
chosen interfacing mechanisms. Or the remaining languages may be determined after the main languages are
chosenÐthen the choices of interfacing mechanisms would be limited to those that have existing support available
with respect to the entire set of languages selected. In this regard, our results revealed that, if the main language
is one of c, c++, python, javascript, and java, the choices for the other languages have typically been among
the same set if FFI is chosen as the interfacing mechanism, shell if IMI is chosen, or one of css, html, and

37

typescript if EBD is chosen. The reason is that those main languages have well deined interfaces among them,
shell has a broad interoperability with those main languages through IPC (i.e., IMI), and javascript, css, html,
and typescript are widely known to integrate via embedding one lanugage unit within another (i.e., EBD).

These strong associations did provide a good reference in practice when developers look for a possible set of
languages to use in tandem. Of course, the fact that a main language choice, a choice of language interfacing
mechanism, or the whole language selection was used frequently for a domain in the past does not necessarily
mean it is the best choice for future projects of the same domain. Nevertheless, such associations still provide a
pointer for decision making regarding those choices for language selectionÐe.g., developers may look further
into why some sample projects in the past used the associated main languages, language interfacing mechanisms,
and language selections, and then make their best decisions based on such deeper understandings.
In summary, our results support a general practical strategy for language use and selection during multi-

lingual software construction, including how to combine the various languages selected: follow the chain of

FD→MaL→LIM→LS. That is, developers may irst decide on the functionality domain (FD) as per the require-
ments of the software project under development. This target then guides the choice of the main language (MaL),
which further informs the selection of the language interfacing mechanism (LIM). Finally, given the decisions on
MaL and LIM, the holistic language selection (LS) can be derived. In each of these steps, the speciic decisions can
be made by referring to the historically strong associations between respective variables (e.g., Table 9 for choosing
MaL according to the target FD and Table 10 for selecting LIM according to the chosen MaL). In particular, the
decision making as regards to LIM choices immediately addresses the question of how to combine the selected
languages since the LIM informs how these chosen languages should interoperate with each other.

4.1.2 Relevant to Researchers. Software construction using multiple languages has been a norm for long (Sec-
tion 3.1.1), yet our software engineering research community has not paid suicient attention to particularly
support multilingual software development. For instance, tool support for multilingual systems (e.g., testing,
maintenance, evolution, and security defense) remains largely lacking, despite a few relevant works addressing a
particular case of such systems (e.g., for java-c programs [20, 26]). We hope that our study results could serve
as an advocate for more researchers to invest in studying developers needs in multilingual software construction
and proposing techniques to assist them with common software engineering tasks in developing multilingual
systems.

In particular, in light of our results showing the diversity of language selections, we suggest researchers to keep
this diversity in mind when developing techniques and tools to support multilingual software quality assurance.
For instance, we found that, despite the almost exclusive focus on java-c (e.g., JNI5) programs by existing
relevant tool support, java-c was not even among the top 20 language combinations in our studied projects
(Section 3.1.4). For example, python was a more frequent collaborating language with c (Table 5), and highly
impactful machine learning frameworks such as TensorFlow [19] and PyTorch [39] are developed mainly in
python and c. Thus, our results clearly call for research on multilingual software beyond java-c programs (as one
particular, non-dominating language selection) and JNI (as one speciic mechanism for language interoperability).

On the other hand, despite the fast growing diversity of language choices (from 35 to 138 in 10 years as shown
in Figure 8), the number of languages used in one project did not grow as fast. In fact, using 3ś5 languages
has increasingly become a dominating multilingual system construction decision in terms of the language
proile size. This implies that with more individual languages available, developers did not keep adding more
languages to a project; rather, they tended to pick a stable number of languages, albeit diferently. Moreover,
as we showed in Section 3.3, the well-known mainstream languages (e.g., javascript, c/c++, java, c#, shell,

5Without loss of generality, java-c programs mainly use the Java native interface (JNI) to realize language interoperations (between Java and

C). Yet other interoperability options do exist between Java and C, such as interprocess communication (IPC) [14] and implicit mechanisms

such as data transfer through ile systems or databases.

38

and python) had a constant leading presence in the language selections over time. This essentially allows for
concentrated eforts that yield meaningful and enduring results. We recommend researchers concentrate on
devising techniques that address the interoperability of these few mainstream/primary languages with each other
and other secondary/supplementary languages. This approach eliminates the concern that such techniques might
swiftly become outdated.

While also addressing interfacing mechanisms among diferent languages (Figure 14), prior works [26, 31, 32]
focused primarily on analyzing multilingual software in which the languages interact via the FFI mechanism.
However, our results revealed that FFI, when used alone, was not a popular choice for language interfacing
during multilingual software construction. Thus, there is a clear disconnect between research and practice here.
Also, our results indicate that IMI is a dominant interfacing mechanism among the studied projects regardless
of their functionality domainsÐwe observed the dominance in all the mined domains. Yet currently there has
been little existing work on analyzing multilingual code with IMI interfacing. Thus, future techniques enabling
(e.g., multi-process [5]) analyses of multilingual software that handle IMI interfacing are critically and urgently
neededÐnote that pursuing a multilingual analysis that is fully agnostic of the interfacing mechanism (i.e.,
working with any interfacing mechanisms) may not be a fruitful future research direction [48].

In addition, our results on the evolution of language interfacing mechanisms and that of the association
between these mechanisms and functionality domains show that, regardless of the target domains, one growing
trend is multilingual software construction is the increasing use of hybrid/mixed interfacing mechanisms and the
diversity of such mechanisms. However, we are not aware of any existing multilingual code analysis that supports
more than one interfacing mechanism at the same timeÐa gap to be illed in future multilingual software analysis.

4.2 Threats to Validity and Study Limitations

We discuss various kinds of threats to the validity of our results, including threats to internal, external, and
construct validity, during we also discuss limitations of our study.
Internal validity. As a common threat to internal validity, possible errors may happen during the development
procedure of our study toolkit, which might have negatively afected our results. In particular, the functionality
domains referred to in our study were identiied through a coding process. During this process, both the codebook
derivation and coding steps are subject to human biases and errors. To mitigate this threat, we addressed
disagreement through meetings/discussions and followed a negotiated agreement, a common approach to dealing
with the human biases and errors in inductive/axial coding.

In addition, the correctness of the functionality domain categorization was limited by by the quality of the data
sources (e.g., descriptiveness of project topics/descriptions). To reduce this threat, we ignored projects whose
descriptions/topics are empty or insigniicant in length. A similar threat is that we used the GitHub linguist [18]
tool to identify the language proile for each project, making our results subject to the imperfect accuracy of this
tool.
Another limitation of our study lies in the inaccuracy of PolyFax [29], the tool we used for identifying the

interfacing mechanisms used in a given multi-language project. This tool was evaluated manually in its original
paper, which reports precision of 78% (for IMI) up to 96% (for EBD), and the recall ranged from 82% to 90%.
The imprecision implies that our results are subject to mistakenly identiied interfacing mechanisms, and the
limitation in recall means that not all of the interfacing mechanisms were recognized for some of the studied
projects.

External validity. The primary threat to the external validity of our study results concerns the sample projects
we have collected from GitHub and used. To make the samples more representative of the projects on GitHub,
we purposely chose to randomly select a sizable dataset that included projects each meeting several criteria

39

regarding popularity, liveness, and recency (Section 2.3), for both the SPC and EVC studies. For example, we
enforced that any sampled project had at least 1,000 stars, which has been used in prior works [38, 43] as an
indicator of popularity. We also have shown that our sample projects covered a variety of software domains (e.g.,
from OS to musical apps). Yet relative to the entire project set on GitHub, our sample sizes were still considered
small. Moreover, our datasets may not well represent all real-world multilingual systems with respect to the
multilingual software construction practice, the focus of our holistic study. For this reason, we cannot broadly
claim that our indings would surely generalize to any multilingual software. Instead, our results should be best
interpreted for the projects that we actually studied. Yet on a side note, we would like to point out that although
the total number of projects on GitHub seemed to be huge [47], we found that most of the projects are inactive
and many are not software development projects at all [24] hence by nature cannot be considered in our study
anyway. This potentially dwarfs the threats to our study results’ external validity concerning the sample size. On
the other hand, since we only considered software projects on GitHub as the single data source, our indings
and conclusions should be best interpreted with respect to open-source software on this particular platform, not
necessarily representing any software project in the wild. We chose GitHub as we believe, as many prior peer
studies have assumed also, that GitHub is a reasonably credible source of software projects to support studies
like ours.
Per our study goals, ideally we would want to use industrial software systems as subjects for our study.

However, we currently do not have access to a substantial set of software projects in the industry. Thus, we chose
to sample open-sources projects on GitHub because they are readily accessible to us and GitHub is a widely used
source of software projects to enable a range of software engineering studies as done in the current literature.
Nevertheless, not all of these open-source projects on GitHub can fully represent real-world software systems
when it comes to multilingual construction particularly concerning language use/selection. Therefore, our results
should be best interpreted with respect to the open-source projects we actually sampled.

On a related note, our study results are pertinent to multilingual software construction in the open-source world,
and may not fully relect modern software development technologies and practices in general (e.g., as applied in
software and information industries). For instance, widely used machine learning frameworks such as Tensorlow
and PyTorch are multilingual systems, in which the language use/selection decisions are potentially also based
on various domain-speciic design concerns (e.g., neural network model optimizations towards greater eiciency)
in addition to what we have explored in our study. The interfacing mechanisms to be chosen may also be more
diverse than the ones we discussed. For example, industrial multilingual software systems may use dedicated
interfacing frameworks (e.g., D-bus [40] and gRPC [21]) to enable interoperability support. Another example is
the Common Object Request Broker Architecture (CORBA) [11], which, through its Interface Deinition Language
(IDL), provides language independence in that CORBA objects written in one language can send requests to
objects implemented in a diferent language.

Construct validity. The main threat to construct validity lies in the metrics and measurement procedures
adopted in our studies. Concerning the characterization metrics used, we cannot ensure that they were absolutely
comprehensive for characterizing multilingual software construction in terms of language use and selection.
To mitigate this threat, we chose a diverse set of statistics and dimensions in quantifying the characteristics of
multilingual systems, including those used in peer prior works (e.g., the number of unique languages in total
used across all the studied projects and that number used for each of the projects). For example, to characterize
the overall language use and selection, we have considered metrics for both language prevalence (Section 3.1.2)
and language signiicance (Section 3.1.3) which seemingly overlap with but actually complement to each other.

Regarding measurements, in our EVC study, we used 1,000 sample projects in total for each year, but the actual
number of multilingual samples varied across the yearsÐas shown in Figure 7, the proportion of these 1,000 that
were multilingual projects ranged from 41% to 74%. As a result, the basis of the yearly results for RQ3 (e.g., results

40

on the evolution of functionality relevance and the evolution of language proile size) was not always consistent.
However, we chose to do so for two reasons. First, ensuring the size balance of the yearly datasets avoided overall
sampling biases. Second, although the eventual numbers of multilingual projects varied from year to year, the
variation exactly represents the actual ratio of multilingual software over software projects of all kinds on GitHub
and likely relects the real-world distribution of multilingual versus single-language software systems.
Another threat to construct validity lies in the consistency of language proiles of the studied projects under

the longitudinal lens. As software evolves, which is a norm for any successful software project, the language
proile of a software project may evolve as wellÐsome languages can be added while others may be removed
during the evolution. We currently cannot guarantee that the language proiles of the projects in our studies
are constant during their evolution and maintenance. Instead, we only considered the latest language proiles
for all projects in the study dataset. Thus, our empirical results and indings should be interpreted with respect
to the language proiles at the time when we obtained them, not necessarily always relecting the language
selection/use of the respective projects throughout their entire lifetime.

Yet another construct validity threat is that we dismissed the possibly varying importance of diferent languages
in characterizing language prevalence and signiicance in Section 3.1. For instance, we treated a byte of shell
code equally to a byte of c code in computing the language distribution by code size and language signiicance in
terms of code size attribution to diferent languages within a language proile. We also note that in this paper we
aimed to study the multilingual construction of modern software in a holistic manner, thus we did not exclude
non-programming languages (e.g., css and html). In doing so, we also dismissed the diferential importance of
programming languages versus other assisting (e.g., data modeling) languages, which may have caused biases in
the explanations of our results.

5 RELATED WORK

Prior peer works that are related to ours fall in two major categories: characterizing language use and analyzing
the efects of language selection.

5.1 Characterizing Language Use

As discussed earlier (Section 1), most of the previous studies concerning language use/selection focused on the
use of individual languages, as opposed to our focus on the holistic language proiles of multilingual systems (i.e.,
how multiple languages are used together in a single project). We have also discussed how their results relate to
our empirical indings in Section 3 when presenting our results.
Like ours, an earlier study [36] also examined the connection between language selection and functionality

domains. Yet again this study addressed diferent languages individually rather than language combinations. In
fact, the study did not particularly characterizemultilingual software but the general language use in any software
project. In contrast, part of our study is dedicated to discovering statistical relationships between functional
domains and holistic language selections. A high-level summary of our study results was recently presented as
an abstract [30], which highlighted those statistical relationships.
Studies explicitly targeting multilingual systems do exist, but they dealt with aspects diferent from our

work and/or approached the characterization in very diferent ways. For instance, Bissyande et al. reported the
popularity of languages in various dimensions (number of projects, code size, age, etc.) and the interoperability
mechanisms between languages [4]. Similar kinds of results were also obtained through an empirical assessment
of what is called polyglot-ism by sampling GitHub projects, which found that there were strong relations between
diferent languages such that various languages tended to be used together in practice [44]. However, unlike
our study, the justiication of the connections among languages was not examined in depth. Recently, Yang et al.
examined developers’ discussions on Stack Overlow (SO) regarding the issues and challenges with multilingual

41

software development, and the current solutions developers have to those challenges [49]. In contrast, our study
is based on the actual multilingual code, not natural-language discussions by developers.

Further research on multilingual software demonstrated the associations between diferent language groups as
used in diferent application domains. For example, Mayer and Bauer [33] showed the relationships between one
general-purpose language (GPL) and another GPL, between a GPL and a domain-speciic language (DSL), and
between one DSL and another DSL. Similarly, Delorey et al. [13] studied the links among various individual
languages and found some companionship patterns of languages. These studies, while diferent from ours,
potentially complement to our characterization of multilingual software construction. Overall language use
statistics and choices have also been investigated directly from developers’ opinions [1, 34], which are also
complementary to our study based on the work products of multilingual software developers.
In all, despite the existence of a few earlier studies examining language use and selection, existing related

works were either limited to single-language software and/or failed to look into the underlying rationale (e.g., as
we did from the perspective of functionality relevance) and mechanism (e.g., as we did from the perspective of
cross-language interaction) that justify/explain language use and selection. Our study also ofers an evolutionary
viewpoint on the use/selection of multiple languages together and their underlying justiication, which is missing
in existing peer studies.

5.2 Analyzing the Efects of Language Selection

Beyond the general statistics on language use, researchers have also looked at the consequences of language
choices and into how the use of languages afects the various properties of the resulting software products. Ray
et al. [43] studied the impact of language features (strong versus weak typing, dynamic versus static typing,
etc.) on the defect occurrence in software written in the respective languages. They also went further to explore
the relationships of language choices with defect types, both in general and in separate application domains.
The study revealed that these relationships/impact were signiicant but small. Based on these results, a further
research reined the approach and obtained more interesting indings that revealed correlations between bug
resolution characteristics and language features (e.g., strong/weak typing) and project features (e.g., age, size and
domain) [50]. On the other hand, Berger et al. [3] attempted to reproduce the study conducted by Ray et al. [43]
and found that the relationships between languages and quality were even much weaker than the originally
reported.

In addition, Mayer, Kirsch, and Le [34] provided empirical evidence that most developers had encountered at
least one bug related to cross-language linking, and that the use of multiple languages increased the diiculty
of bug ixing. Later, Abidi et al. [1] reported that understandability was the most impacted quality attribute in
a multi-language system (by the use of multiple languages), based on the perception of 93 developers. More
recently, the same authors examined the impact of design smells on fault-proneness of a particular case of
multilingual systemsÐJNI software [2], and revealed positive associations between the two. Likewise, in a study
that was also focused on JNI software [20], the researchers found that having more dependencies between code
units in diferent languages increased the risk of functional bugs and security vulnerabilities. More recently, we
examined and quantiied how language selection afects the proneness of the multi-language projects that select
the languages to various kinds of vulnerabilities [28].

Compared to these prior studies, we focused on the characteristics concerning the multilingual construction of
open-source software projects by looking at the size and composition of language proiles, ofering an updated,
multifaceted overview of language use and selection in contemporary multilingual systems. Also, instead of
assessing the quality impact of language use and selection, we addressed the functionality relevance of language
selection in terms of the quantitative association between the selection and functionality domains. We also
dove into this overall association, dissecting/justifying it through studying the efects of the choices of, as

42

well as intermediate associations with, language interfacing mechanisms and main programming languages on
the ultimate language selection holistically. Moreover, we ofered a longitudinal view of such associations in
multilingual systems, which has not been explored before.

6 CONCLUSIONS

We presented a large-scale characterization study on language use and selection in multilingual software with
projects randomly sampled from GitHub in order to understand the multilingual construction of modern software
systems. Using carefully chosen and specially developed tools along with relevant statistical analyses, we provided
a recent, multi-faceted, and evolutionary view of language use and selection in the multi-language world, and
looked into the functionality rationales behind the language selection decisions as a way to justify the decisions.
Our study revealed dominating and continuously rising prevalence of multilingual construction in modern

open-source software projects. We also discovered the growing trend of using 3 to 5 languages in multilingual
software and top language selections, along with the increasing diversity of language choices. We further found
that language selection was generally quite strongly associated with some functionality domains. Over time, the
top language selections for those domains changed considerably, whereas the primary languages appeared to
be relatively stable. The strong association patterns regarding how functionality domains targeted by a project,
languages selected in the project, the main language included in the selection, and interfacing mechanism used
for those selected languages to communicate with each other provide immediate references or even guidance
for language use/selection during multilingual software construction. We reported major indings and drew
insights from empirical results, which together led to practical, actionable suggestions for both researchers and
developers of multilingual systems.

For future work, we plan to leverage our insights gained from this study to develop practical tools to support
the quality assurance of multilingual software. An additional next step is to expand our current study by further
analyzing the interfacing between languages and assessing the implications of diferent interfacing mechanisms
to the correctness and security of multilingual code.

ACKNOWLEDGMENT

We thank our associate editor and reviewers for insightful and constructive comments. This work was supported
in part by the U.S. National Science Foundation (NSF) under Grant CCF-2146233 and in part by the U.S. Oice of
Naval Research (ONR) under Grant N000142212111.

REFERENCES

[1] Mouna Abidi, Manel Grichi, and Foutse Khomh. 2019. Behind the scenes: developers’ perception of multi-language practices. In

Proceedings of the 29th Annual International Conference on Computer Science and Software Engineering. 72ś81.

[2] Mouna Abidi, Md Saidur Rahman, Moses Openja, and Foutse Khomh. 2021. Are multi-language design smells fault-prone? An empirical

study. ACM Transactions on Software Engineering and Methodology (TOSEM) 30, 3 (2021), 1ś56.

[3] Emery D Berger, Celeste Hollenbeck, Petr Maj, Olga Vitek, and Jan Vitek. 2019. On the impact of programming languages on code

quality: a reproduction study. ACM Transactions on Programming Languages and Systems (TOPLAS) 41, 4 (2019), 1ś24.

[4] Tegawendé F Bissyandé, Ferdian Thung, David Lo, Lingxiao Jiang, and Laurent Réveillère. 2013. Popularity, interoperability, and impact

of programming languages in 100,000 open source projects. In 2013 IEEE 37th annual computer software and applications conference.

303ś312.

[5] Haipeng Cai and Xiaoqin Fu. 2022. D2ABS: A Framework for Dynamic Dependence Analysis of Distributed Programs. IEEE Transactions

on Software Engineering (TSE) 48, 12 (2022), 4733ś4761.

[6] Haipeng Cai and Barbara Ryder. 2017. DroidFax: A Toolkit for Systematic Characterization of Android Applications. In International

Conference on Software Maintenance and Evolution (ICSME). 643ś647.

[7] Haipeng Cai and Barbara Ryder. 2021. A Longitudinal Study of Application Structure and Behaviors in Android. IEEE Transactions on

Software Engineering (TSE) 47, 12 (2021), 2934ś2955.

43

[8] Haipeng Cai and Douglas Thain. 2016. DistIA: A Cost-Efective Dynamic Impact Analysis for Distributed Programs. In IEEE/ACM

Conference on Automated Software Engineering (ASE). 344ś355.

[9] John L Campbell, Charles Quincy, Jordan Osserman, and Ove K Pedersen. 2013. Coding in-depth semistructured interviews: Problems of

unitization and intercoder reliability and agreement. Sociological methods & research 42, 3 (2013), 294ś320.

[10] Yaofei Chen, Rose Dios, Ali Mili, Lan Wu, and Kefei Wang. 2005. An empirical study of programming language trends. IEEE software 22,

3 (2005), 72ś79.

[11] CORBA. 1991. Common Object Request Broker Architecture (CORBA). https://www.omg.org/spec/CORBA/.

[12] Juliet Corbin and Anselm Strauss. 2014. Basics of qualitative research: Techniques and procedures for developing grounded theory. Sage

publications.

[13] Daniel P Delorey, Charles D Knutson, and Christophe Giraud-Carrier. 2007. Programming language trends in open source development:

An evaluation using data from all production phase sourceforge projects. In Second International Workshop on Public Data about Software

Development (WoPDaSD’07). 1ś5.

[14] Xiaoqin Fu, Haipeng Cai, Wen Li, and Li Li. 2020. Seads: Scalable and Cost-Efective Dynamic Dependence Analysis of Distributed

Systems via Reinforcement Learning. ACM Transactions on Software Engineering and Methodology (TOSEM) 30, 1 (2020), 1ś45.

[15] Xiaoqin Fu, Boxiang Lin, and Haipeng Cai. 2022. DistFax: A Toolkit for Measuring Interprocess Communications and Quality of

Distributed Systems. In IEEE/ACM International Conference on Software Engineering (ICSE), Companion Proceedings. 51ś55.

[16] GitHub. 2023. GitHut 2.0 - GitHub Language Stats. https://madnight.github.io/githut/.

[17] GitHub, Inc. 2020. GitHub: a US-based global company, provides hosting for software development version control using Git. https:

//github.com/.

[18] GitHub, Inc. 2020. GitHub Developer: provides APIs to retrive or query repositories in GitHub. https://developer.github.com/v3.

[19] Google Brain Team. 2021. The TensorFlow project. https://github.com/tensorlow/tensorlow.

[20] Manel Grichi, Mouna Abidi, Fehmi Jaafar, Ellis E Eghan, and Bram Adams. 2020. On the impact of interlanguage dependencies in

multilanguage systems empirical case study on java native interface applications (JNI). IEEE Transactions on Reliability 70, 1 (2020),

428ś440.

[21] gRPC. 2020. gRPC Tutorial. https://grpc.io/docs/.

[22] Fauna Herawati, Muhamad Satria Mandala Pua Upa, Rika Yulia, and Retnosari Andrajati. 2019. Antibiotic Consumption at a Pediatric

Ward at a Public Hospital in Indonesia. Asian Journal of Pharmaceutical and Clinical Research 12, 8 (2019), 64ś67.

[23] Capers Jones. 2009. Software engineering best practices. McGraw-Hill, Inc.

[24] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M German, and Daniela Damian. 2016. An in-depth study of

the promises and perils of mining GitHub. Empirical Software Engineering 21, 5 (2016), 2035ś2071.

[25] Siim Karus and Harald Gall. 2011. A study of language usage evolution in open source software. In Proceedings of the 8th Working

Conference on Mining Software Repositories. 13ś22.

[26] Sungho Lee, Hyogun Lee, and Sukyoung Ryu. 2020. Broadening Horizons of Multilingual Static Analysis: Semantic Summary Extraction

from C Code for JNI Program Analysis. In 2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE).

127ś137.

[27] Justin Lestal. 2023. How many programming and coding languages are there? https://devskiller.com/how-many-programming-

languages/.

[28] Wen Li, Li Li, and Haipeng Cai. 2022. On the Vulnerability Proneness of Multilingual Code. In ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE). 847ś859.

[29] Wen Li, Li Li, and Haipeng Cai. 2022. PolyFax: a toolkit for characterizing multi-language software. In Proceedings of the 30th ACM Joint

European Software Engineering Conference and Symposium on the Foundations of Software Engineering. 1662ś1666.

[30] Wen Li, Na Meng, Li Li, and Haipeng Cai. 2021. Understanding Language Selection in Multi-Language Software Projects on GitHub. In

2021 IEEE/ACM 43rd International Conference on Software Engineering: Companion Proceedings (ICSE-Companion). 256ś257.

[31] Wen Li, Jiang Ming, Xiapu Luo, and Haipeng Cai. 2022. PolyCruise: A Cross-Language Dynamic Information Flow Analysis. In 31st

USENIX Security Symposium (USENIX Security 22). 2513ś2530.

[32] Wen Li, Jinyang Ruan, Guangbei Yi, Long Cheng, Xiapu Luo, and Haipeng Cai. 2023. PolyFuzz: Holistic Greybox Fuzzing of Multi-

Language Systems. In 32nd USENIX Security Symposium (USENIX Security 23). 1379ś1396.

[33] Philip Mayer and Alexander Bauer. 2015. An empirical analysis of the utilization of multiple programming languages in open source

projects. In Proceedings of the 19th International Conference on Evaluation and Assessment in Software Engineering. 1ś10.

[34] Philip Mayer, Michael Kirsch, and Minh Anh Le. 2017. On multi-language software development, cross-language links and accompanying

tools: a survey of professional software developers. Journal of Software Engineering Research and Development 5, 1 (2017), 1.

[35] Slashdot Media. 2020. SourceForge: The Complete Open-Source and Business Software Platform. https://sourceforge.net/.

[36] Leo A Meyerovich and Ariel S Rabkin. 2013. Empirical analysis of programming language adoption. In Proceedings of the 2013 ACM

SIGPLAN international conference on Object oriented programming systems languages & applications. 1ś18.

[37] Matthew B Miles, A Michael Huberman, and Johnny Saldaña. 2018. Qualitative data analysis: A methods sourcebook. Sage publications.

44

 https://www.omg.org/spec/CORBA/
https://madnight.github.io/githut/
https://github.com/
https://github.com/
https://developer.github.com/v3
https://github.com/tensorflow/tensorflow
https://grpc.io/docs/
https://devskiller.com/how-many-programming-languages/
https://devskiller.com/how-many-programming-languages/
https://sourceforge.net/

[38] Michail Papamichail, Themistoklis Diamantopoulos, and Andreas Symeonidis. 2016. User-perceived source code quality estimation

based on static analysis metrics. In 2016 IEEE International Conference on Software Quality, Reliability and Security (QRS). 100ś107.

[39] Adam Paszke, Sam Gross, Soumith Chintala, and Gregory Chanan. 2021. The PyTorch project. https://github.com/pytorch/pytorch.

[40] Havoc Pennington. 2020. D-Bus Tutorial. https://dbus.freedesktop.org/doc/dbus-tutorial.html.

[41] Rafaele Perego, Salvatore Orlando, and P Palmerini. 2001. Enhancing the apriori algorithm for frequent set counting. In International

Conference on Data Warehousing and Knowledge Discovery. 71ś82.

[42] Sebastian Raschka. 2020. Mlxtend: (machine learning extensions), a Python library of useful tools for the day-to-day data science tasks.

http://rasbt.github.io/mlxtend.

[43] Baishakhi Ray, Daryl Posnett, Vladimir Filkov, and Premkumar Devanbu. 2014. A large scale study of programming languages and code

quality in GitHub. In Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering. 155ś165.

[44] Federico Tomassetti and Marco Torchiano. 2014. An empirical assessment of polyglot-ism in GitHub. In Proceedings of the 18th

International Conference on Evaluation and Assessment in Software Engineering. 1ś4.

[45] Sergi Valverde and Ricard V Solé. 2015. Punctuated equilibrium in the large-scale evolution of programming languages. Journal of The

Royal Society Interface 12, 107 (2015), 20150249.

[46] Bogdan Vasilescu, Alexander Serebrenik, and Mark GJ van den Brand. 2013. The Babel of software development: Linguistic diversity in

Open Source. In International Conference on Social Informatics. 391ś404.

[47] Jason Warner. 2018. Thank you for 100 million repositories. https://github.blog/2018-11-08-100M-repos/.

[48] Haoran Yang, Wen Li, and Haipeng Cai. 2022. Language-Agnostic Dynamic Analysis of Multilingual Code: Promises, Pitfalls, and

Prospects. In ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering

(ESEC/FSE), Ideas, Visions and Relections. 1621ś1626.

[49] Haoran Yang, Weile Lian, Shaowei Wang, and Haipeng Cai. 2023. Demystifying Issues, Challenges, and Solutions for Multilingual

Software Development. In IEEE/ACM International Conference on Software Engineering (ICSE). 1840ś1852.

[50] Jie M Zhang, Feng Li, Dan Hao, Meng Wang, Hao Tang, Lu Zhang, and Mark Harman. 2019. A study of bug resolution characteristics in

popular programming languages. IEEE Transactions on Software Engineering 47, 12 (2019), 2684ś2697.

45

https://github.com/pytorch/pytorch
https://dbus.freedesktop.org/doc/dbus-tutorial.html
http://rasbt.github.io/mlxtend
https://github.blog/2018-11-08-100M-repos/

	Abstract
	1 Introduction
	2 Methodology
	2.1 Research Questions
	2.2 Study Overview
	2.3 Repository Mining
	2.4 Single-Period Characterization (SPC)
	2.5 Evolutionary Characterization (EVC)
	2.6 Language Scoping

	3 Results
	3.1 RQ1: Language Use/Selection Overview
	3.2 RQ2: Functionality Relevance of Language Selection
	3.3 RQ3: Evolution of Multilingual Systems

	4 Discussion
	4.1 Systematization and Implications of Results
	4.2 Threats to Validity blackand Study Limitations

	5 Related Work
	5.1 Characterizing Language Use
	5.2 Analyzing the Effects of Language Selection

	6 Conclusions
	References

