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ABSTRACT

Today’s software systems are mostly developed in multiple lan-
guages (i.e., multi-language software), yet tool support for under-
standing and assuring these systems is rare. To facilitate future re-
search on multi-language software engineering, this paper presents
PolyFax, a toolkit that offers automated means for dataset collec-
tion from GitHub and two analysis utilities—a vulnerability-fixing
commit categorization tool (VCC) and a language interfacing mech-
anism identification/categorization tool (LIC). The VCC tool im-
mediately assists with assessing the vulnerability proneness of a
given multi-language project based on its version histories, while
the LIC tool enables dissection of the most important aspect of the
construction of multi-language systems. Application of PolyFax to
7,113 multi-language projects with 12.6 million commits showed its
practical usefulness in terms of promising efficiency and accuracy.
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1 INTRODUCTION

Large-scale studies of existing software projects, along with the cor-
responding code repositories (e.g., those on GitHub), have propelled
significant progress in understanding hence improving modern soft-
ware systems. Practical tool support for mining such projects and
analyzing those systems can be greatly instrumental [31], as they
allow researchers to focus more on the core research questions and
insights. For instance, tools for automated data collection/crawl-
ing, filtering/cleaning, and common characterization analyses are
essential for research based on mining open-source projects.

In fact, a large body of research aims to mine and study open-
source repositories [5, 6, 8, 18, 19, 25, 28–30, 32], enabled or at least
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facilitated by the underlying characterization tools. However, few
of these studies [30] provided a commonly reusable set of data
collection and characterization utilities (e.g., for project profiling,
complete commits/source retrieval, etc.). Most importantly, existing
characterization tools (e.g., D2A [32] and VccFinder [28]) are largely
limited to single-language projects. Tools dealing with typically
multi-language programs (e.g., [7, 17] for Android apps with native
code and [10–13] for distributed systems often built with various
languages for different components) ended up only addressing part
of those systems that is written in one language (e.g., Java).

Yet the majority of today’s software systems are written in mul-
tiple languages (hence they are noted as multi-language software)—
for example, a recent prior study [23] confirmed that more than
80% of open-source projects on GitHub are developed with more
than one language. It is also found lately that multi-language soft-
ware is notably prone to security vulnerabilities mainly induced
by the interfacing between different languages used in a software
project [22]—in fact, this proneness has found correspondence to
cross-language vulnerabilities with severe consequences [24]. On
the other hand, tools supporting studies of multi-language soft-
ware (e.g., those for identifying language interfacing and assessing
proneness to vulnerabilities across languages) are critically lacking.

To fill this gap, we present PolyFax, a toolkit for characterizing
multi-language projects on GitHub and dissecting the construction
of multi-language systems. PolyFax consists of three related tool-
s/modules: a crawler, a scrubber, and two analyzers. The crawler
retrieves project data per given criteria, including general properties
and historical commits (i.e., commit logs, authors, code snippets)
and sources. The scrubber supports data pre-processing to facilitate
further analysis. As two instances of such analyses, PolyFax in-
cludes a tool for vulnerability-fixing commit categorization (VCC)
and one for language-interfacing identification/categorization (LIC).
The VCC tool classifies a given commit as one that potentially fixes a
vulnerability of a particular class, based on fuzzy matching between
the commit log and keywords/phases summarized from CWE [1].
The LIC tool identifies the mechanisms in which the different lan-
guages used in a multi-language system interface with each other.

To assess its efficiency and effectiveness, we used PolyFax to
characterize 7,113 projects with 12.6 million commits. It finished
crawling, scrubbing, and analyzing the 193.9GB data in 23.1, 1.1,
and 17.2 hours (1.47 for VCC and 2.5 for LIC), respectively. Our
evaluation of the two analyzers based on random sampling and
cross-validation showed that they achieved 80%+ precision and
recall. PolyFax is the technical enabler of a recent study on the
vulnerability proneness of multi-language software [22] and ex-
pected to serve future studies of these systems. The VCC tool is
also immediately applicable to single-language projects.

A demo video for PolyFax is here and tool package here [20].
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Figure 1: Overview of PolyFax.

Figure 1 gives an overview
of PolyFax’s architecture. As
its primary input, PolyFax re-
trieves open-source projects
from GitHub [4]; optionally,
users can customize the con-
figuration as another input to
let PolyFax only collect sam-
ples of interests.

With these inputs, PolyFax performs data analysis with three
modules: Crawler, Scrubber and Analyzer. At first, the Crawler

grabs repository profiles, clones the projects, and retrieves histori-
cal commits to the specified local storage. Then, the Scrubber per-
forms pre-processing [16] of the textual information (e.g., project
descriptions, commit logs) out of all the project metadata.

Finally, the Analyzer executes vulnerability-fixing commit cat-
egorization (VCC) and language interfacing mechanism categoriza-
tion (LIC). VCC utilizes the FuzzyWuzzy technique [9] on commit
logs to classify the commits into three high-level vulnerability cat-
egories (i.e., Porous defenses, Risky resource management, and
Insecure interaction) [1]. LIC takes project sources as input and
scans themwith a finite state machine (FSM)modeled on summaries
of language interaction patterns; it outputs a tuple of language in-
terfacing mechanisms for each project. After all of these analyses
complete, the Analyzer reports the results to users.

3 DESIGN AND IMPLEMENTATION

This section describes the design and implementation of PolyFax,
elaborating its three modules: crawler, scrubber, and analyzer.

3.1 Crawler

Crawler
by-Domain

Crawler
by-Language

Github
Commit 
Crawler

Repository profiles

Commits

Profile Crawler

Figure 2: Overview of PolyFax.

The Crawler searches
repositories using the
GitHub API [2], filter-
ing/grabbing reposito-
ries matching the cri-
teria as configured. Specifically, it consists of three sub-modules,
two Profile Crawlers (i.e., Crawler-by-Language and Crawler-by-
Domain) and a Commit Crawler, as shown in Figure 2.

3.1.1 Profile Crawler. A specific configuration defines the cri-
teria of repository collection, specifying project attributes such
as popularity, primary languages, size, creation date, and updated
date. With these constraint values, the Profile Crawler constructs
profile requests following the manual of GitHub’s API [2].

Two profile crawlers are available in PolyFax for complementary
purposes. Crawler-by-Language grabs repositories according to
the user-specified languages while Crawler-by-Domain searches
and grabs repositories based on a given functionality-domain list.
When no languages or domains are specified, the crawler grabs
projects with stars greater than 1,000 (configurable) by default.

For the over 70 different project properties available on GitHub,
PolyFax retrieves 7 (i.e., repository id, stargazers count, languages,
URL, pushed date, topics, and description). Users can customize to

include more or less to meet varying analysis needs. As the output,
a set of repository profiles is stored in a database.

3.1.2 Commit Crawler. With the repository profiles as input,
Commit Crawler clones all the projects to the local storage, and
then retrieves (simply using git) and parses all the commit informa-
tion for each repository. This approach is much more efficient than
grabbing the commits using GitHub APIs due to the rate limits of
GitHub [2]. For each commit, PolyFax saves five primary features
(i.e., commit identifier, author, date, related issue (if existed), and
commit log); hence users can retrieve code changes and details of
issues for the commits for further, in-depth analyses.

3.2 Scrubber

Usually, an insightful analysis is not readily feasible by just directly
using the raw, potentially noisy (e.g., textual) information [16].
Hence, the Scrubber is responsible for data cleaning, taking the
raw text (e.g., project descriptions, commit logs) as input. This
pre-processing procedure transforms the text to accommodate a
natural language processing (NLP) algorithm via four steps while
leveraging NLTK for Python [3]: (a) remove all characters besides
numbers, letters, and commas from the input text; (b) tokenize
remaining text; (c) lemmatize each token; and (d) eliminate stop
words. This process results in a set of words that capture the critical
information for each text snippet.

3.3 Analyzer

TheAnalyzer analyzes the data collected from GitHub. Specifically
in PolyFax, it includes two analysis tools: VCC and LIC.

3.3.1 Vulnerability-fixing commit categorization (VCC). We
developed VCC based on the following assumption: if the log of a
commit contains keywords/phrases indicating a class of vulnerabili-
ties, thenwe regard the commit as aiming to fix those vulnerabilities.
This is in the same spirit as prior work [29] identifying bug-fixing
commits based on keyword search in commit logs.

Based on the assumption, VCC works in two steps: (1) Vulnera-
bility keywords summarizing. By summarizing the top 25 most dan-
gerous CWEs [1], three high-level categories [26] are obtained as
Porous defenses (11 CWEs), Risky resource management (8 CWEs),
and Insecure interaction (6 CWEs). We applied the Scrubber to
the description for each category and extracted security-related
keywords or phrases. (2) Vulnerability keywords matching. Based
on the per-category keywords, we improved the FuzzyWuzzy tech-
nique [9] to classify commit logs as outlined in Algorithm 1.

The algorithm first retrieves these categories (line 2) and cleans
the given commit with pre-processText (line 3), followed by comput-
ing a match score between each category and the commit (lines 5-
21). Specifically, it retrieves (line 7) and traverse keywords/phrases
in each category (lines 8-20). Next, the commit log is split into
𝑛-grams (lines 9-17) for a given phrase/keyword of length 𝑛 and
matched against the phrase with FuzzyWuzzy (line 18). For better
precision, we use a minimal score of 90 as the threshold (lines 6)
and take the the highest score for all phrases of a category (lines 19-
20) as the score against that category (line 21). The best-matching
category is eventually returned as the vulnerability category for
the given commit (lines 22-23).
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Algorithm 1: Identifying and classifying a vulnerability-fixing commit
Input:𝐶𝑚𝑚𝑡 : a commit including its log and code snippet
Output: 𝑣𝐶𝑎𝑡 : the vulnerability category of𝐶𝑚𝑚𝑡

1 Function classifyCommit (𝐶𝑚𝑚𝑡 )
2 𝑉𝐶← initVulCategory () /* Categories with keywords/phrases */

3 𝐶𝑚𝑚𝑡 ← pre-processText (𝐶𝑚𝑚𝑡 ) /* Tokenize, stemmatize, etc. */

4 𝐶𝑎𝑡𝑆𝑐𝑜𝑟𝑒← 𝜙

5 foreach𝐶𝑎𝑡 in𝑉𝐶 do

6 𝑆𝑐𝑜𝑟𝑒← 90 /* The minimum match score as the threshold */

7 𝑃ℎ𝑟𝑎𝑠𝑒𝐿𝑖𝑠𝑡 ←𝐶𝑎𝑡 .phrases /* Keywords/phrases of category 𝐶𝑎𝑡 */

8 foreach 𝑃ℎ𝑟𝑎𝑠𝑒 in 𝑃ℎ𝑟𝑎𝑠𝑒𝐿𝑖𝑠𝑡 do
9 𝑁𝑝 ← getWordNum (𝑃ℎ𝑟𝑎𝑠𝑒) /* 1 if 𝑃ℎ𝑟𝑎𝑠𝑒 is a keyword */

10 𝑁𝑐 ← getWordNum (𝐶𝑚𝑚𝑡 ) /* Number of tokens */

11 𝑥𝐺𝑟𝑎𝑚𝑆𝑒𝑡 ← 𝜙 /* The set of n-grams in 𝐶𝑚𝑚𝑡; 𝑛=𝑁𝑝 */

12 𝐼𝑛𝑑𝑒𝑥 ← 0
13 while 𝐼𝑛𝑑𝑒𝑥 < 𝑁𝑐 do

14 𝐸𝑛𝑑 ← 𝐼𝑛𝑑𝑒𝑥 + 𝑁𝑝 /* Split 𝐶𝑚𝑚 into n-grams */

15 𝑥𝐺𝑟𝑎𝑚𝑆𝑡𝑟 ←𝐶𝑚𝑚𝑡 [𝐼𝑛𝑑𝑒𝑥 :𝐸𝑛𝑑]
16 𝑥𝐺𝑟𝑎𝑚𝑆𝑒𝑡 .append (𝑥𝐺𝑟𝑎𝑚𝑆𝑡𝑟 )
17 𝐼𝑛𝑑𝑒𝑥 + +

/* Match 𝑃ℎ𝑟𝑎𝑠𝑒 against 𝐶𝑚𝑚’s n-grams with FuzzyWuzzy */

18 𝑅𝑒𝑠𝑢𝑙𝑡 = FuzzyWuzzy.extractOne (𝑃ℎ𝑟𝑎𝑠𝑒 , 𝑥𝐺𝑟𝑎𝑚𝑆𝑒𝑡 )
19 if 𝑅𝑒𝑠𝑢𝑙𝑡 .𝑠𝑐𝑜𝑟𝑒 > 𝑆𝑐𝑜𝑟𝑒 then

20 𝑆𝑐𝑜𝑟𝑒← 𝑅𝑒𝑠𝑢𝑙𝑡 .𝑠𝑐𝑜𝑟𝑒

21 𝐶𝑎𝑡𝑆𝑐𝑜𝑟𝑒[𝐶𝑎𝑡 ] = 𝑆𝑐𝑜𝑟𝑒 /* Keep the best match score with 𝐶𝑎𝑡 */

22 𝑣𝐶𝑎𝑡 ← maxScoreCat (𝐶𝑎𝑡𝑆𝑐𝑜𝑟𝑒) /* Take the best-matched category */

23 return 𝑣𝐶𝑎𝑡

3.3.2 Language interface categorization (LIC). Through man-
ually checking respective languages’ official documentation, we
derived four basic language interfacing mechanisms:
(1) Foreign function invocation (FFI). With FFI, the host language

provides a foreign function interface to bridge its own semantics
and calling conventions and those of the guest language’s (e.g.,
Java Native Interface (JNI) in Java).

(2) Implicit invocation (IMI). IMI is a cross-language interfacing
mechanism based on inter-process communications (e.g., re-
mote procedure call (RPC)).

(3) Embodiment (EBD). With this mechanism, the languages are
interdependent and coexist with each other, with the code of
one language often embedded in that of another language (e.g.,
the interfacing among {css, html, javascript}).

(4) Hidden interaction (HIT).With HIT, there is no explicit indica-
tion of direct interaction between languages, but there may be
indirect data connection between different languages.
Then, we devised a rule-based classification model C based on

pattern matching and finite state machine (FSM) as follows:

C = (𝑠0, F, 𝛿, S, R,Φ), 𝑠0, F ∈ S, 𝛿∗ : S × R∗ → S

In themodel, 𝑠0 and F represent the initial and end state respectively;
S is the state set; R is the pattern set; 𝛿 is the state transition function
and Φ is a regular expression engine. Given a sequence of inputs
I = {𝐼0, 𝐼1, ..., 𝐼𝑛}, C obtains a set of matched rules R = Φ(I); iff
𝛿∗ (𝑠0,R) = F then we say I is classified by C.
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Figure 3: Language interfacing mechanism classification.

Algorithm 2: Classifying a project by language interfacing mechanisms
Input: 𝑃 : a multi-language project repository
Output: 𝐿𝑃 : the set of interfacing mechanism labels for 𝑃

1 Function classifyProject (𝑃 )
2 𝐴𝐶← getClassifiers () /* Convene all the classifiers in LICE */

3 𝑅← compileRegex (𝐴𝐶) /* Compile all regexs in 𝐴𝐶 */

4 𝑅𝐶 ← createMap (𝐴𝐶) /* Create a map from regexs to classifiers */

5 foreach 𝑓 𝑖𝑙𝑒 in 𝑃 do

6 𝑅𝑀 ← scanRegex (𝑅, 𝑓 𝑖𝑙𝑒) /* Obtain matched regexs */

7 𝑃𝐶 ← pickClassifier (𝑅𝐶 , 𝑅𝑀 ) /* Fetch relevant classifiers */

8 foreach𝐶 in 𝑃𝐶 do

9 if classifyMatch (𝐶 , 𝑅𝑀 ) then
10 𝐿𝑃 .insert (𝐶.𝑙𝑎𝑏𝑒𝑙 ) /* One mechanism recognized */

11 if 𝐿𝑃 ==∅ then
12 𝐿𝑃 .insert (“HIT") /* Not FFI, IMI, or EBD, so defaulted to HIT */

13 return 𝐿𝑃

14 Function classifyMatch (𝐶 , 𝑅𝑀 )
15 𝑆𝑄 ← initStateQueue (𝐶) /* Initialize with the initial state of 𝐶 */

16 foreach 𝑟𝑚 in 𝑅𝑀 do

17 𝑞𝑙𝑒𝑛← 𝑆𝑄 .length
18 for 𝑘 ← 0 to 𝑞𝑙𝑒𝑛 − 1 do
19 𝑆 ← 𝑆𝑄 [𝑘]
20 𝑁𝑆 ← nextState (𝑆 , 𝑟𝑚 ) /* State transition on input 𝑟𝑚 */

21 if 𝑁𝑆 == 𝑁𝑈𝐿𝐿 then

22 continue

23 if isFinalState (𝐶 , 𝑁𝑆 ) then
24 return TRUE /* Reached a final state */

25 else

26 𝑆𝑄 .push (𝑁𝑆 ) /* Save context for a matched pattern */

27 return FALSE

Based on this model, we developed a language interfacing classi-
fication engine (LICE), as shown in Figure 3. LICE consists of two
collaborating modules: Classifier encode and Classifier scan.

(1) Classifier encode module (CEM). CEM aims to construct a chain
of classifier set (FFI, IMI, EBD, and HIT). For the FFI classifier set,
we manually summarized the interfacing code patterns for top
languages [14]; and 20 FFI classifiers were finally constructed
(e.g., c_java, c_python). For IMI, we implemented 7 classifiers
by investigating code patterns based on standard components
that support remote calls (e.g., D-bus [27], gRPC [15]). The EBD
classifier set consists of one classifier for languages {javascript,
css, html} as only these three languages are interdependent and
exist in the top language selections. The HIT set includes one
classifier for the projects without explicit code patterns.

(2) Classifier scan module (CSM). With a repository as input, CSM
scans the source files one by one and works in a best-effort
fashion to obtain all language interfacing types. As shown in
Algorithm 2, after compiling regexs in all the available classi-
fiers (lines 2-4), PolyFax finds matched patterns R = Φ(I) (line
6) in each file (line 5) and picks relevant classifiers (line 7). If
a classifier accepts all the matched patterns (regexs), the cor-
responding mechanism is recognized (line 8-10). To determine
the acceptance, PolyFax runs the nFSM as a non-deterministic
finite automaton against those regexs (lines 15-27). Importantly,
it maintains a matching context (via the state queue 𝑆𝑄 ) to
obtain all possibly accepted regex sequences.

4 EVALUATION

We evaluate PolyFax through the following two research questions:

(1) RQ1What is the efficiency of PolyFax?
(2) RQ2What is the accuracy of PolyFax?
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Table 1: Time cost of individualmodules on analysis of 7,113

projects with 12.6 million commits.

Module Crawler Scrubber VCC LIC

Time cost (in hours) 23.1 1.1 14.7 2.5
Table 2: PolyFax’s time costs with growing sample sizes (T-*

denotes “the time cost (in minutes) of").

Subset No. #Projects Size (GB) #Commits (K) T-VCC T-LIC

1 1,113 20.2 1,134 77.1 18.2
2 2,000 50.3 3,150 173.3 39.6
3 4,000 121.4 8,316 404.5 96.5

Experiment Setup. In the experiments, we ran the Crawler in
PolyFax without languages or domains specified; the default star
count for repositories was configured in [1000, 15000], and only
multi-language projects were saved. Both Crawlers and Ana-

lyzers in PolyFax worked in single process. All experiments were
conducted on a 64-bit Ubuntu 18.04 with a 32-core CPU (AMD
Ryzen Threadripper 3970X) and 256 GB memory.

4.1 RQ1: Efficiency of PolyFax

With the default configuration, PolyFax took a total of 41.4 hours
to finish the whole process of data collection and analysis, during
which 7,113 projects and 12.6 million commits were collected [21].
The time costs of individual modules are shown in Table 1. By
contrast, PolyFax is much more efficient since it could take about
three months to grab 12.6 million commits by GitHub API [2].

To further evaluate the relationship between the efficiency of the
two analyzers and the sample size, We divided the 7,113 samples
into three subsets and evaluated the time cost on the subsets as
shown in Table 2. From the results, we can see that the time cost
of VCC grows almost linearly as the number of projects or the
number of commits increases; a similar correlation can be found
between LIC and commit or project count. This shows that PolyFax
is capable of (scalable for) large-scale repository mining.

4.2 RQ2: Accuracy of PolyFax

To evaluate the effectiveness of PolyFax, we adopted a strategy of
random sampling followed by cross-validation.
Evaluation of VCC. To evaluate the accuracy of VCC, we ran-
domly sampled 50 projects and 500 commits per project from the
dataset and constructed ground truth manually for gauging the
precision and recall of VCC. Specifically, the authors independently
labeled the sampled commits following three steps: (1) read the
commit log, (2) check the associated code snippet, and (3) check
the issue comments if they exist.

It is worth noting that each ground-truth vulnerability-fixing
commit corresponds to an actual/confirmed vulnerability rather
than just keyword/phrase matches. After all the authors completed
independent labeling, they cross-validated and accepted the label for
each commit when all agreed. For cases with initial disagreement,
dedicated discussions were held to reach final decisions.

Table 3 summarizes the evaluation results. While not compli-
cated, our tool achieved a quite competitive level of accuracy com-
pared to the state-of-the-art peer tool D2A [32], which only reported
53% accuracy (based on a small manual study of only 57 commits in
total)—although we cannot make strong claims here since we did
not compare both tools on the same dataset. Moreover, D2A only
targets C/C++ projects while PolyFax is language-independent;
hence it can be applied more broadly.

Table 3: Cross-validation results of the VCC tool

Category % Commits Precision Recall

Porous defenses 43% 85% 89%
Risky resource management 48% 83% 81%
Insecure interaction 9% 91% 83%

Table 4: Cross-validation results of the LIC tool

Category %Projects %Precision %Recall

FFI 28% 85% 89%
IMI 69% 78% 82%
EBD 35% 96% 90%
HIT 11% 81% 84%

Evaluation of LIC. Per its design, LIC can identify a set of lan-
guage interfacing mechanisms for each input repository. For in-
stance, given a repository with language selection {java, c, python},
LIC may classify it as {FFI, II} because java interacts with c
through JNI while c interacts with python through D-bus. To eval-
uate LIC’s precision, we randomly sampled 150 projects and con-
ducted a cross-validation procedure to measure the precision and
recall based on manual ground truth. According to the implemen-
tation described in Section 3.3.2, the evaluation results are based
on the samples’ top languages [14]. Table 4 presents the precision
and recall of LIC on the samples; since LICE summarized all the
possible interfacing mechanisms between top languages according
to the respective official manuals, it achieved high precision and
recall. Specifically, the precision ranged from a minimum of 78%
for IMI up to 96% for EBD, and the recall ranged from 82% to 90%.

4.3 Discussion

PolyFax offers a series of useful features, including repository
crawling, commit classification, and language interfacing catego-
rization. Its precision and recall indicate its potential of being appli-
cable for multiple purposes. For example, the VCC can be used for
empirical analysis as wells for providing abundant training data for
machine learning (or deep learning) based vulnerability detectors
since the code snippets, issues, or even CVEs of the commits can
be retrieved from the results of VCC. Moreover, it is not limited to
particular languages due to its language-independent nature.

For another example, results of the LIC may inform the design
of a cross-language vulnerability detector—algorithms specific to
each interfacing mechanism will be more precise than generic ones
for arbitrary interfacing mechanisms. For instance, for FFI, the
algorithm may identify vulnerabilities with more precise data flow
analysis based on foreign/native function calls.

5 CONCLUSION

We presented PolyFax, a novel toolkit for characterizing multi-
language software. It offers the capabilities of mining the reposito-
ries of open-source multi-language projects. It also includes two
analysis tools, for vulnerability-fixing commit categorization and
language interfacing mechanism identification/categorization, re-
spectively. We empirically demonstrated PolyFax’s merits in effi-
ciency and effectiveness against real-world open-source projects
on GitHub. PolyFax is open source and publicly available.
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