
POLYCRUISE: A Cross-Language Dynamic Information Flow Analysis

Wen Li
Washington State University, Pullman

li.wen@wsu.edu

Ming Jiang
University of Texas at Arlington

jiang.ming@uta.edu

Xiapu Luo
The Hong Kong Polytechnic University

csxluo@comp.polyu.edu.hk

Haipeng Cai R

Washington State University, Pullman
haipeng.cai@wsu.edu

Abstract
Despite the fact that most real-world software systems today
are written in multiple programming languages, existing pro-
gram analysis based security techniques are still limited to
single-language code. In consequence, security flaws (e.g.,
code vulnerabilities) at and across language boundaries are
largely left out as blind spots. We present POLYCRUISE, a
technique that enables holistic dynamic information flow anal-
ysis (DIFA) across heterogeneous languages hence security
applications empowered by DIFA (e.g., vulnerability discov-
ery) for multilingual software. POLYCRUISE combines a light
language-specific analysis that computes symbolic dependen-
cies in each language unit with a language-agnostic online
data flow analysis guided by those dependencies, in a way
that overcomes language heterogeneity. Extensive evalua-
tion of its implementation for Python-C programs against
micro, medium-sized, and large-scale benchmarks demon-
strated POLYCRUISE’s practical scalability and promising
capabilities. It has enabled the discovery of 14 unknown cross-
language security vulnerabilities in real-world multilingual
systems such as NumPy, with 11 confirmed, 8 CVEs assigned,
and 8 fixed so far. We also contributed the first benchmark
suite for systematically assessing multilingual DIFA.

1 Introduction

Real-world software systems today are mostly multilingual—
they consist of integral code units written in different program-
ming languages [28, 34, 44, 45]. Moreover, the past decade
has seen growth in both the prevalence and dominance of
multilingual software and the average number of languages
used in each system [38]. Given their critical role in the mod-
ern cyberspace, there is an urgent quest for systematically
assuring the security of multilingual software systems.

Yet despite this criticality and urgency, technique and tool
support for securing multilingual systems remains largely
lacking. Unlike in single-language systems, insecure (e.g.,
vulnerable or malicious) code behaviors may exist not only
within individual language units but also at and across the in-
terfaces between different languages in multilingual systems.
As a result, even if each single-language unit of a multilingual
system is secure, the entire system may still not be as a whole.

Thus, holistic (cross-language) validation of multilingual pro-
grams against insecure properties is essential.

Recognizing this need, researchers have started developing
cross-language analyses that can support security applications.
Yet most existing relevant approaches [8, 22, 34, 36, 67, 69]
are exclusively focused on and limited to a particular case in
the multi-language world: JNI programs—programs written
in C and Java which interact through an interfacing mech-
anism called the Java Native Interface (JNI). A few other
approaches exist but face practicality barriers. For instance,
Truffle [29], a dynamic taint analysis framework, leverages a
custom Java virtual machine (VM) called GraalVM [52, 70]
to support multilingual systems. For each none-Java language,
the user has to implement a runtime, which is a daunting task
hence not always practical. Also, this VM-based approach is
heavyweight in nature hence not scalable to large, complex
systems. Moreover, the reliance on customized runtime brings
portability barriers, given the diverse and evolving language
features that are hard to keep the customization up to.

For another example, a language-agnostic dynamic slicer,
ORBS [5] computes backward dynamic dependencies for
multilingual code based on heuristic removal of program
statements treated as text lines. Unfortunately, this design
suffers from intrinsic scalability issues, as analytically con-
firmed by others [31] and empirically validated by ourselves.
On ten real-world multilingual subjects of 2∼17 KSLOC (on
GitHub) with ten randomly chosen slicing criteria in each
and a 24-hour per-criterion timeout, ORBS was only able to
produce results for 27 (out of the 100 in total) criteria across
the three smallest subjects at a cost of 9.47 hours for each.

To fill the present gap, we take the first step to enable practi-
cal security defense support for multilingual software through
cross-language dynamic information flow analysis (DIFA).
We target DIFA as it has been a fundamental technique [66]
underlying a range of security applications (e.g., vulnerabil-
ity discovery [18], intrusion detection [46], security policy
validation [71]). However, developing a holistic DIFA for
multilingual systems faces two major challenges:

• Semantics disparity. The heterogeneous languages used in
a multilingual system represent disparate language seman-
tics. Thus, neither can existing (single-language) DIFA be

applied immediately, nor can we perform a DIFA on each
language unit separately and then stitch the results.

• Analysis cost-effectiveness. To be practically useful, the
DIFA must scale to large, real-world systems—in fact, a
multilingual system tends to be larger in (code) size than
single-language ones. Also, the analysis needs to be effec-
tive (offering a reasonable level of accuracy) for the target
security application (e.g., discovering new vulnerabilities).

Meanwhile, we cannot simply bypass these challenges by
resorting to single-language software construction. As differ-
ent languages have unique advantages in facilitating the im-
plementation of certain functionalities, developers do benefit
from multi-language development for better productivity. In
this paper, we aim to tackle the challenges of cross-language
DIFA by exploiting two key insights outlined below.

• While the differences in languages’ semantics greatly im-
pede purely static semantic analysis (e.g., statically com-
puting data/control dependencies) across those languages,
computation of dynamic data/control flow facts required
for DIFA can be more readily unified, so as to overcome the
semantics disparity challenge hence enable holistic DIFA.

• The unified hence language-agnostic dynamic analysis of
DIFA can still be guided and reduced by a static syntac-
tic analysis specific to each language, which helps ensure
the overall scalability and efficiency of the DIFA. Mean-
while, the imprecision of the syntactic analysis can be com-
pensated by the dynamic analysis. This will overcome the
cost-effectiveness challenge without sacrificing scalability.

Following these insights, we have developed POLYCRUISE,
a cross-language DIFA with an application to DIFA-based vul-
nerability discovery in multilingual systems written in Python
and C. The overarching principle of our POLYCRUISE de-
sign is to combine minimal, semantics-independent language-
specific analyses with a language-agnostic dynamic analysis.
The hybrid analysis strategy is justified as follows: the latter
computes the eventual output of a DIFA (i.e., information flow
paths between given sources and sinks), while the former com-
putes approximate dependencies to determine the scope of
instrumentation. In particular, each language-specific analysis
translates a language unit’s code to a language-independent
symbolic representation (LISR). Then, POLYCRUISE uses a
light syntactic analysis called symbolic dependence analy-
sis (SDA) to compute the approximate dependencies based
on the LISR with respect to the sources/sinks. At runtime,
the instrumentation guided by these symbolic dependencies
generates cross-language execution events, from which a dy-
namic information flow graph (DIFG) is incrementally built
on the fly. Meanwhile, different kinds of vulnerabilities are
discovered based on the DIFG via respective plugins.

To validate our design, we implemented POLYCRUISE for
Python-C programs given the consistently popular use of
Python [21, 56], as backed by C for many functionalities, in

impactful (e.g., machine learning) systems. While the popu-
larity/impact may make our tool more significant, supporting
Python is more challenging (e.g., compared to analyzing JNI
programs). First, unlike for C/C++ and Java, analysis facilities
for Python are largely lacking. Second, Python has rich dy-
namic constructs, making Python code incomplete until at run-
time. We overcame these challenges by developing new anal-
ysis support for Python while using dynamic instrumentation
to deal with its dynamic nature. We also implemented seven
vulnerability detection plugins to assess POLYCRUISE’s abil-
ity to support the discovery of various types of vulnerabilities
(e.g., buffer overflow, sensitive data leak). As described in
Section 4, the approaches described in this paper should be
transferable to other language combinations.

With this implementation, we evaluated POLYCRUISE on
12 real-world multilingual systems of diverse domains and
scales against various executions. Our results show its high
scalability and cost-effectiveness, as well as its enabling capa-
bilities for cross-language DIFA. The static analysis part took
in total <3 seconds for systems of 220 KSLOC or smaller and
<3 minutes for our largest subject (of 6,419 KSLOC). The (on-
line) dynamic analysis incurred 2.71∼11.96x run-time slow-
down. POLYCRUISE has found 14 unknown, cross-language
vulnerabilities, including those in NumPy [49], with 11 con-
firmed, 8 CVEs assigned, and 8 fixed by developers so far.
We also built the first multilingual dynamic analysis bench-
mark PyCBench, with which we validated the high precision
(93.5%) and recall (100%) of the DIFA in POLYCRUISE.

Through POLYCRUISE, we have demonstrated a novel
methodology for practical DIFA of multilingual dynamic anal-
ysis, which can empower applications other than detecting
information flow vulnerabilities and even beyond the security
domain. In sum, our contributions include:

• A scalable dynamic analysis technique for multilingual
software written in Python and C, POLYCRUISE, which
exploits light language-specific static analyses and online
language-agnostic dynamic analysis to enable the first cross-
language DIFA to the best of our knowledge (§3).

• An open-source implementation of POLYCRUISE for
Python-C programs, which works with large-scale, real-
world multilingual systems in different domains (§4).

• An open DIFA test suite covering a variety of analysis
features, which is the first cross-language dynamic analysis
benchmark suite publicly available as we know of (§5).

• An extensive evaluation of POLYCRUISE, which demon-
strates the promising efficiency, cost-effectiveness, and vul-
nerability discovery capabilities of our technique (§6).

We have released our dataset and code to facilitate repro-
duction, replication, and reuse, as all found here.

2 Background and Motivation
Different languages may interact via diverse interfacing mech-
anisms. This diversity partly makes cross-language DIFA

https://github.com/numpy/numpy
https://bitbucket.org/wsucailab/polycruise

challenging. Meanwhile, the need for tackling the diversity
motivates and justifies our design for POLYCRUISE.
Interfacing mechanisms. At a high level, the ways different
language units interact fall into two main categories:

• Uniform mechanism: via interprocess communication
(IPC). This is universally applicable and totally language-
independent. For instance, Remote Procedure Call (RPC),
which is widely used in middleware, is of this kind.

• Language-specific mechanism: via foreign function inter-
face (FFI). Different language units interoperate through di-
rect function invocations. Thus, this mechanism is strongly
language-dependent. Current mainstream languages (e.g.,
Java, Python, PHP, Ruby [21]) all support FFI for C per
their official documentations.

At a more detailed level, the diversity of interfacing mecha-
nisms is greater. For instance, within the same (FFI) category,
Java interacts with C via native function calls, passing param-
eters via jobject, while the interfacing between Python and
C is different and more complex [59]. Even in the same lan-
guage combination, the mechanism also varies. For instance,
in Python-C programs, one may use ctypes to load a C li-
brary and then search and invoke a C function. Alternatively,
a C module can be built as a Python extension to be used as a
Python module. In the other direction, the C unit can invoke
a Python function through the APIs provided by the Python
interpreter, after converting C-type parameters to PyObjects.
Other mainstream languages provide similar yet still diverse
mechanisms (e.g., Go interacts with C via the cgo command
while Ruby interacts with C via a particular FFI).

Due to these diversities at multiple levels, DIFA designs
based on specific mechanisms would have limited applica-
bility. Moreover, many modern languages (e.g., Python) are
dynamic, for which static analysis is impeded and dynamic
analysis is necessary [72]. Thus, designs that rely on sub-
stantial and deep (e.g., semantic) static analysis would have
limited cost-effectiveness (low precision and/or low recall).
Illustrating/motivating examples. Figure 1 depicts three
cases of cross-language vulnerabilities each with a differ-
ent interfacing mechanism between Python and C. pi and ci
denotes line no. i in a Python and C unit, respectively.

• In (a), the Python unit invokes a C function through ctypes.
A least-privilege violation [47] happens at c3 when the ex-
ternal input (Extdata) retrieved at p3 reaches there via p5,
allowing an attacker to gain unauthorized access to any file
specified. Single-language analyses would either stop at
the language (Python) boundary, or make a conservative as-
sumption that the data retrieved at p6 causes a vulnerability
as well (hence leading to excessive imprecision).

• In (b), the interfacing is realized via Python extension (bidi-
rectional). Sensitive data retrieved at p3 (source) may leak
at c9 (sink) along the inter-language flow (red lines). Cross-
language call graph construction hence a holistic flow anal-

p1 from ctypes import *
p2 def DataProcess():
p3 Extdata = Socket.Recv ()
p4 Lib = cdll.LoadLibrary("libC.so")
p5 Lib.process (Extdata)
p6 IntData = Internal ()
p7 Lib.process (IntData)

c1 int process(char *data) {
c2 char* Name = data

c3 FILE *f = fopen (Name , “r”)
c4 fread (f,...)
c5 fclose (f)
c6 }

a

p1 from Cb import *
p2 def Source ():
p3 String S = source ();
p4 Foo (S)
P5
p6 def Foo (S) :
p7 Cfoo (S)
P8
p9 def Bar (S) :
p10 Cbar (S)

c1 void Cfoo (pyObj, args) {
c2 PyArg_ParseTuple(args, S)

c3 ……
c4 args2 = Py_BuildValue(S);
c5 PyObject_Call(Bar, args2 , ...);

c6 ……
c7 }
c8 void Cbar (env, obj, S) {
c9 sink(S);
c10 }

b

p1 from Cc import *
p2 class PC:
p3 def __init__(self, data):
p4 self.data = data
p5 def __enter__(self):
p6 self.data = encode (self.data)
p7 def __exit__(self, *_):
p8 self.data = decode (self.data)
p9 with PC (data):
p10 process ()

c1 PyObject* Encode(data) {
c2 en = base64 (data);
c3 log (en)
c4 return Py_BuildValue(en);
c5 }

c6 PyObject* decode(…, data) {
c7 de = debase64 (data);
c8 log (de)
c9 return Py_BuildValue(de);
c10 }

c

Pa.py Ca.so

Pb.py Cb.so

Pc.py Cc.so

Figure 1: Example Python-C interfaces and vulnerabilities.

ysis is necessary to find this vulnerability, which cannot be
achieved by separately analyzing each language unit.

• In (c), the interfacing mechanism is the same as in (b). Yet
different from (b), here the two C function invocations are
implicit—note that __enter__ and __exit__ are a result
of the with construct at p9, and they are visible only to the
Python interpreter but not to a static analyzer. Calls to these
two functions can only be captured at runtime. Dynamic
analysis is necessary for finding the information leak here.

These examples not only illustrate how security vulnerabil-
ities may happen at and across language interfacing hence the
need for cross-language, holistic analyses, but also justify our
dynamic analysis based design for POLYCRUISE.

3 The POLYCRUISE Approach

This section describes our technical approach. We start with
an overview (§3.1) of POLYCRUISE and then elaborate its
two high-level phases: static analyses and instrumentation
(§3.2) and online dynamic analysis (§3.3).

3.1 Approach Overview
An overview of POLYCRUISE is given in Figure 2. Three
POLYCRUISE Inputs should be provided: (1) the multilin-
gual program P under analysis, viewed as a collection of
per-language code units, (2) user configuration X , including
the lists of sources/sinks (given per language unit) as required
by any DIFA and options for determining which security ap-
plication plugins to apply, and (3) the set T of run-time inputs
for P as required by any dynamic analysis.

POLYCRUISE
Inputs

Multilingual program P
…C unit Python unit another

language

User configuration X
Per-language source/sink lists Plugin options

Run-time input set T (for P)
Test 1 Test 2 Test N…

Phase 1: Static analyses & instrumentation

Language-specific
symbolic translation

Language-agnostic
symbolic dependence analysis (SDA)

SDA-guided static
instrumentation

Language-independent
symbolic representation (LISR) Symbolic dependencies

SDA-guided
dynamic

instrumentation

Instrumented multilingual program P’ in execution

Shadow
event
queue

Language-agnostic information
flow computation (IFC)

Dynamic information flow graph (DIFG)

Language-agnostic vulnerability detection (plugins)

bugs

POLYCRUISE
Outputs

Phase 2: Online dynamic analysis

1.1

1.2

1.3

2.1
2.2

2.3

unit

Figure 2: An overview of POLYCRUISE’s architecture, including its inputs, major technical components, and outputs.

With these inputs, POLYCRUISE works in two main phases.
In Phase 1, it first translates each language unit into a
language-independent symbolic representation (LISR), from
which a symbolic dependence analysis (SDA) computes
symbolic dependencies in the unit by referring also to the
source/sink list for the unit. The language independence of
the LISRs enables the SDA to be language-agnostic. The
resulting symbolic dependencies are then used to guide a
static instrumentation step, informing it about the scope of
necessary probing, for units written in a compiled language
(e.g., C or Java). The main goal of this phase is to reduce the
instrumentation (static or dynamic) scope hence the run-time
overhead of the next phase. The rationale is that the sym-
bolic dependencies (over)approximate all possible dynamic
information flow between the given sources and sinks.

For an interpreted language (e.g., Python), POLYCRUISE
starts its Phase 2 with a dynamic instrumentation while the
statically instrumented program P′ is running against the
given input set T . This instrumentation is also guided by the
symbolic dependencies resulting from the SDA in the previ-
ous phase. Notably, the dynamic analysis in this second phase
is online; that is, the analysis is performed on the fly (in the
memory). It uses a shadow memory based circular queue (i.e.,
shadow event queue) to buffer streaming execution events—
no trace is serialized to any external storage. While these
events are being collected, POLYCRUISE incrementally per-
forms run-time information flow computation (IFC) between
any source and sink (across all language units of P), with
resulting flow facts being represented as (and continuously
added to) a dynamic information flow graph (DIFG).

From the DIFG, a set of vulnerability detection plug-
ins, each detecting one type of (e.g., data leak) vulnerabil-
ities, continuously computes information flow paths between
sources/sinks relevant to the vulnerability type and reports
the vulnerabilities found as part of POLYCRUISE Outputs.

3.2 Static Analyses/Instrumentation (Phase 1)
To collect the run-time data required by its DIFA,
POLYCRUISE needs to instrument the given program P. In ac-
cordance with the overarching principle (§1) of our design, the

instrumentation should probe for harvesting the run-time data
in a language-independent manner so as to enable language-
agnostic dynamic analysis, while only relying on minimal
language-specific analyses. Following this rationale, the first
phase works in three major steps as elaborated below.

3.2.1 Symbolic Translation (Step 1.1)
To minimize language-specific analyses, POLYCRUISE aims
at a language-agnostic analysis (i.e., SDA) that computes
uniform instrumentation-guiding information (i.e., symbolic
dependencies). This is achieved through a preprocessing step
that translates each language unit of P into its language-
independent symbolic representation (LISR) form.
Definition. The symbolic dependencies computed by SDA
are intended to approximate data dependencies between state-
ments of a language unit. Accordingly, our LISR represen-
tation considers three kinds of statements: line (i.e., assign-
ment), call, and return, and two kinds of symbols: global and
function. The formal syntax of LISR is hence given below:

P ::= G∗F∗

G ::= e
F ::= τ f (x∗)S∗

S ::= [x =]e∗ | [x =] f (e∗) | return e
e ::= x |C | ε
τ ::= T | ε

A program P is a sequence G∗ of global symbols, followed
by a sequence F∗ of function symbols—a symbol is simply
an identifier. A global symbol consists of an expression e. A
function symbol F has the return type τ, function name f , a se-
quence x∗ of parameters, and a sequence of statements S∗. The
return tag τ only indicates whether f returns a symbol, since
the return type does affect our symbolic dependence compu-
tation. A statement S is of one of three kinds: a line statement
[x =]e∗, a function call statement [x =] f (e∗)—return value
could be none thus is optional, and a return statement return e.
An expression e is of one of three kinds: a symbol x, a constant
C, and ε. A return tag τ is a general type T or ε. ε denotes
an empty string. As LISR serves for data dependence ap-
proximation hence only needs to capture variable definitions

Algorithm 1: Translate a given code entity to LISR
Input: E: a given code entity of one of the three types:

global/function/statement
Output: Slisr : the LISR of E

1 Function translate2LISR (E)
2 Slisr ← None;
3 Te ← getEntityType (E);
4 if Te == global then
5 Slisr ← getGlobalSymbol (E);
6 else if Te == f unction then
7 Slisr ← getFunctionSymbol (E); // symbolize the function type

8 else if Te == statement then
9 if E == call then

10 Ret ← getDef (E);
11 if Ret 6= None then
12 Slisr ← getSymbol (Ret) + "="; // get return because def exists

13 Call = getCallSymbol (E); // symbolize the function call

14 Slisr ← Slisr + Call
15 else if E == return then
16 Use← getUse (E);
17 Slisr ← "Return " + getSymbol (Use);
18 else
19 Use← getUse (E);
20 De f ← getDef (E);
21 Slisr ← getSymbol (De f) + "=" + getSymbol (Use);
22 return Slisr

(defs) and uses, other common language syntax elements (e.g.,
operators) are dropped in LISR.

Translation. Following the LISR definition above, the sym-
bolic translation of a language unit is simply done through
light syntactic parsing of the unit. During the parsing, every
statement in the unit’s source code that belongs to the three
kinds or includes one of the two types of data symbols consid-
ered in LISR is translated to a LISR statement or symbol. The
main goal is to capture variable defs and uses. Since only such
a simple syntactic analysis is needed and no any semantic
(e.g., data/control flow) analysis is involved, translating the
code of a language into its LISR is reasonably simple.

The detailed LISR translation process is given in Algo-
rithm 1. As defined above, LISR considers three types of code
entities: statement, global, and function. The algorithm trans-
lates each of these entities according to its type. Specifically,
a global symbol is extracted from a global entity (line 5). For
a function definition entity (line 7), the LISR translator sym-
bolizes the definition as LISR expression. In the translation of
a statement (line 8-21), if the statement’s type is call (line 9),
the return value is translated into the left symbol as a defini-
tion if it exists. Then, the function call is symbolized as the
right symbol; if the statement’s type is return (line 15), the
symbol is extracted to formulate a LISR return statement; for
other statements, the translator symbolizes the definitions as
left symbols and the uses as right symbols (line 19-21).

As an example, Figure 3 shows the resulting LISR (right
column) of the symbolic translation for a language unit (left
column). The global variable gValue of type typeA at Line 2
is translated to a global symbol gValue. At Line 3, the original
statement is translated to a function symbol Out put(arg), and
the next to a call statement without a return value. The original
statement at Line 10 is translated to a line statement without
left value, so on and so forth.

1 Source Code | LISR
2 typeA gValue | gValue
3 Outpu t (typeB& a r g) | Outpu t (a r g)
4 p r i n t (a r g) | p r i n t (a r g)
5 |
6 typeB Foo (typeB N) | T Foo (N)
7 typeB V := 1 | V = C
8 typeB& S := V | S = V
9 V := N | V = N

10 w h i l e N != 0 : | N
11 V := V * N | V = V,N
12 N := N − 1 | N = N, C
13 Outpu t (S) | Outpu t (S)
14 r e t u r n S | r e t u r n S

Figure 3: An illustration of the symbolic translation.

Unlike an ordinary intermediate representation (IR), e.g.,
LLVM’s bitcode, LISR is not meant to represent an entire
program with respect to its full semantics. Instead, it only
captures the most essential information (i.e.,def/use) needed
for other analysis steps in POLYCRUISE. While different lan-
guages have different semantics, which constitutes a major
barrier for cross-language analysis, the essential information
can be represented in a language-agnostic manner, as is LISR.
It is this nice property of LISR that essentially enables our
DIFA approach to work across heterogeneous languages.

3.2.2 Symbolic Dependence Analysis (SDA) (Step 1.2)
Once the LISR is obtained for a language unit, the next step is
to compute the symbolic dependencies in the unit according
to the (language-independent) def/use symbols in its LISR.

Definition. Given two statements Si and S j, S j is symbolically
dependent on Si iff {U(Si)∩D(S j)}∪{D(Si)∩U(S j)} 6=∅,
where U(S) and D(S) is the use and def set of statement S.

In addition to approximating true/flow dependencies [23]
(i.e., when D(Si) ∩ U(S j) 6= ∅), we also consider possible
anti-dependencies [23] (i.e., when U(Si) ∩ D(S j) 6= ∅) to
ensure the soundness of the SDA. Without a pointer/reference
analysis, the SDA has no access to aliasing information for
the analyzed language unit. Yet ignoring aliases could lead to
missing true dependencies induced by aliasing. For instance,
in the example of Figure 3, suppose one source is variable V at
Line 9 and S becomes an alias of V after Line 8. Considering
the anti-dependencies here will lead Lines 13 and 14 to be
included in the symbolic dependence set of Line 9 hence the
dynamic information flow paths between Line 9 and Lines 13,
14 to be potentially captured—because only the statements
symbolically dependent on Line 9 will be probed in the later
instrumentation steps; or these flow paths would be missed.

The symbolic defs and uses for the example of Figure 3 are
given in Figure 5. Let Si denote Line i and suppose (S9, V)
is a source. As we consider true/flow dependencies, we have
D(S9)∩U(S11) 6= ∅; when we consider anti-dependencies,
we also have U(S8)∩D(S9) 6=∅. Thus, the symbolic depen-
dence set of S9 is computed as {S8, S11}.

 T Foo(N)
 V = C
 S = V
 V = N

 ……

V = N

SDA

global symbol
area

stack
Function symbol

parameters
local symbols

……

forward execution

backward execution

Execution unit

LISR

Criteria
(DIFA sources)

Figure 4: An overview of the symbolic dependence analysis.

1 LISR | s y m b o l i c def − use p a i r s
2 gValue |
3 Outpu t (a r g) |
4 p r i n t (a r g) | D[4] = { } ,U[4] = { a r g }
5 |
6 T Foo (N) |
7 V = C | D[7] ={V} ,U[7] ={C}
8 S = V | D[8] ={S } ,U[8] ={V}
9 V = N | D[9] ={V} ,U[9] ={N}

10 N | D[1 0] = { } ,U[1 0] = {N}
11 V = V,N | D[1 1] = {V} ,U[1 1] = {V,N}
12 N = N, C | D[1 2] = {N} ,U[1 2] = {N, C}
13 Outpu t (S) | D[1 3] = { } ,U[1 3] = { S}
14 r e t u r n S | D[1 4] = { } ,U[1 4] = { S}

Figure 5: Symbolic defs/uses for the example of Figure 3.

Dependence computation. Based on the definition, symbolic
dependencies in a language unit are computed as shown in
Figure 4. The SDA takes a set of criteria (information sources)
predefined for a language unit and the unit’s LISR. It then
symbolically executes the unit, both forward and backward,
to capture true/flow and anti dependencies, respectively. To
that end, it uses two memory regions: a stack including the
local symbol area (LSA) to keep track of local symbols, and
a global symbol area (GSA) to keep track of global symbols.

The main SDA algorithm is given in Algorithm 2 (as the
computeSD routine). It takes the set of entry functions of
target programs and the predefined criteria as inputs—an
entry function is either the main function of an executable or
a library interface exposed externally. Furthermore, the set
of criteria is defined and customized by POLYCRUISE users.
The algorithm starts with all entry functions being pushed into
a FIFO queue QF (line 2); then, it (symbolically) executes
these functions one by one with its symbolic dependence
summary (SDS) through a subroutine computeSDoF.

A function’s SDS is a bitmap that indicates whether its re-
turn value or parameters are reachable from the given criteria
through def-use-association (DUA) computation at a specific
callsite of the function. For the example of Figure 3, if we
define an 8-bit SDS, the SDS of the Out put function at Line
13 will be computed as 01000000. The first bit 0 indicates that
the return value is not reachable; the second bit 1 indicates
the first parameter is reachable. The remaining bits are zero
because this function has only one parameter.

For each entry function F, the SDA stack is (re)initialized
(line 6)—GSA is shared for all functions; then, its current SDS
(SDSF) is retrieved via getSDS (line 7)—which can be initial-

Algorithm 2: Compute symbolic dependencies
Input: EF :set of entry functions, C: predefined criteria (e.g., DIFA sources)
Output: Ss:symbolic dependence set of C

1 Function computeSD (EF , C)
2 QF ← initQueue (EF)); // QF is a FIFO queue of functions

3 Gsym ← /0; // Gsym is the set of global symbols in the GSA

4 while QF 6= /0 do
5 F← QF .pop();
6 Stack← /0; // (re)initialize the SDA stack for the current function F
7 SDSF ← getSDS (F); // SDSF is the symbolic dependence (SD) summary of F
8 computeSDoF (F, SDSF, C, Stack, Gsym); // compute SDs per function

9 if (gSym = getReachable (Gsym)) 6= /0 then
10 Re f = getRefer (gSym); // get entry functions that use global symbols

11 QF .push(Re f);
12 Ss ← obtainStmt (); // get the statements symbolically dependent on C
13 return Ss

Algorithm 3: SDA for each function
Input: F:an entry function, SDSF:the (current) SDS of F, Stack:the stack

(see Figure 4), Gsym:the set of global symbols, C:predefined criteria
Output: SDSF:the (updated) SDS of F

1 Function computeSDoF (F, SDSF, C, Stack, Gsym)
2 Lsym ← initLocalSymb (SDSF); // initialize the local symbol area

3 while True do
4 computeMain (F, Lsym, SDSF, C, Stack, Gsym); // forward execution

5 StmtNumF ← getReachableStmt ();
6 Fr = reverseFunc (F);
7 computeMain (Fr , Lsym, SDSF, C, Stack, Gsym); // backward execution

8 StmtNumr ← getReachableStmt ();
9 if StmtNumF == StmtNumr then

10 break; // having reached the fixed point

11 updateSDS (F, SDSF);

ized as -1 (by default) or a customized value given in the crite-
ria. Once a global symbol in F is found (via getReachable)
reachable from a criterion and inserted into GSA after one pass
of symbolic execution of F, all entry functions that reference
the global symbol are pushed into QF again for recomputation
to ensure consistency (line 11). When QF becomes empty,
SDA obtains the set of all statements computed as symboli-
cally dependent on the criteria as the algorithm’s output.

The algorithm for computing the symbolic dependencies
for each function is given in Algorithm 3. SDA first initializes
the local symbol area (LSA) for the current function in terms
of its SDS that indicates which formal parameters should
be pushed into the LSA (line 2). After that SDA repeats the
procedure of forward (line 4) and backward (line 7) compu-
tation until the number of the reachable statements remains
unchanged, which means the algorithm reaches a fixed point
and all possible statements have been collected. As a reminder,
the backward computation shares the same procedure with
the forward but takes the reverse order of statements.

The details of computeMain are given in Algorithm 4,
where SDA symbolically executes the input function. As ini-
tialization, SDA pushes the function into the stack if it is not
there yet. This step helps avoid recursive invocations, which
would be redundant here as the function’s SDS will remain
unchanged when the inputs are fixed. Then, SDA processes
each statement differently per its type as follows:
Line. If the statement’s Use is in the criteria set, LSA, or GSA,
SDA pushes the associated De f into the LSA or GSA so that
the symbolic dependence propagates along the execution flow.

Algorithm 4: The Main logic of SDA
Input: Lsym:the set of local symbols for F; others are same as Algorithm 3
Output: SDSF:the (updated) SDS of F

1 Function computeMain (F, Lsym, SDSF, C, Stack, Gsym)
2 if F ∈ Stack then
3 return SDSF;
4 Stack.push(F);
5 foreach Si in F do
6 D[Si],U [Si]← getDefUse (Si);
7 if getType (Si) == Line then
8 if isCriteria (C, Si) or (U [Si] ∈ {Lsym ∪Gsym}) then
9 if isGlobalSym (D[Si]) then

10 Gsym.push(D[Si])
11 else
12 Lsym.push(D[Si])

13 else if getType (Si) == Call then
14 Callee, Sdsc ← initCallee (Si); // initial SDS: actual->formal args

15 if Callee != NULL then
16 Sdsc ← computeSDoF (Callee, Sdsc, C, Stack, Gsym);
17 else
18 Sdsc ← -1;
19 updateSym (Lsym, Sdsc, Si); // update F’s Lsym with the callee’s SDS

20 else if getType (Si) == Return then
21 if Si ∈ {Lsym ∪Gsym} then
22 setRetBit (SDSF); // return to the callsite

23 if isReachable (Si) == true then
24 Ss.push(Si); // save the statements for instrumentation—will just probe there

25 Stack.pop(F);
26 SDSF ← SDSF | summarize (Lsym,F); // update F’s SDS with its local symbols

Call. SDA handles Call statements to compute interprocedu-
ral dependencies. Before executing a callee, SDA first obtains
the callee’s definition and constructs the invocation context
for it; the context contains the callsite and an initial SDS of
the callee computed with the actual parameters. The initial
SDS indicates which symbols of the parameters would flow
into the callee, and SDA utilizes this information to initialize
callee’s LSA. If SDA fails to get the definition of the callee
(e.g., a library function) and its initial SDS is non-zero, SDA
conservatively sets the callee’s SDS as -1, which means the
return value and all parameters of the function are reachable
from criteria. Otherwise, SDA invokes computeSDoF for the
callee. After the execution of the callee, SDA updates LSA of
the current function with the callee’s SDS, which indicates
the symbols flowing from the callee back to the function.
Return. SDA checks the Use at a Return statement. The pres-
ence of Use in the LSA or GSA indicates that the return value
of the current function is reachable from the criteria, hence
SDA sets the return-bit of SDS to 1 in this case (line 22).

When executing a statement, SDA inserts it into a set if it
is reachable (from the input criteria C). When SDA finishes
executing all statements of a function, it updates the function’s
SDS with its LSA before returning; this conservative treatment
is necessary because the function may have output parameters.

3.2.3 SDA-Guided Static Instrumentation (Step 1.3)
In the last step of Phase 1, POLYCRUISE performs static in-
strumentation of each compiled-language unit to insert probes
for harvesting the run-time data underlying its DIFA. More
specifically, the static instrumenter takes the set of statements
that are computed by the SDA as symbolically dependent on
any given source in the unit. Then, it probes for the run-time
data only at those statements. As these data are collected at

Ev
e

n
t

co
n

te
n

t
Ev

e
n

t
id

en
ti

fi
e

r

Language type Event type Module ID

Function ID Statement ID

0 4 8 12 16 20 24 28 32

64
bits

Line

Call

Return

x=e

x=f(e)

return e

e = x | C | 𝜀
Language type: [0, 28-1], (C, Java, Python, ...)

Event type: [0, 28-1], (Line, Call, Return, ...)

Module ID: [0, 216-1], Local file number in language

Function ID: [0, 212-1], Local number in a module

Statement ID: [0, 220-1], Local number in a function

Figure 6: Definition of execution events monitored at runtime.

runtime, we elaborate them as part of Phase 2. Without loss
of generality, if the given program P does not include any
compiled-language unit, this step is skipped.

3.3 Online Dynamic Analysis (Phase 2)
POLYCRUISE performs its dynamic analysis while the (stati-
cally instrumented, if necessary) program P′ executes. Thus,
this phase does not exit until P′ exits. This online design is
justified by the need for handling long/continuously-running
programs (e.g., those working as services). For those pro-
grams, an offline analysis may not even be feasible [9, 11]. In
particular, Phase 2 works in three steps as elaborated below.

3.3.1 SDA-Guided Dynamic Instrumentation (Step 2.1)
For units written in interpreted languages, especially those
having rich dynamic constructs, static instrumentation cannot
fully probe for harvesting necessary run-time data. In fact, the
code of such units may not even be completely visible to a
static analysis (§2). POLYCRUISE addresses this challenge by
dynamically instrumenting these units. As in Step 1.3, only
the statements symbolically dependent on the given sources
are probed. Both instrumentation steps also consistently probe
for the same kind of run-time data, as detailed as follows.

The run-time data to harvest are language-independent
execution events that encode key (dynamic) information flow
facts. Figure 6 gives the definition of these events. Each event
starts with a 64-bit identifier followed by the event content.
In particular, the event type within the identifier is used to
guide the information flow computation (IFC, i.e., Step 2.2) to
decode the event content. The other fields are not used in the
IFC itself but enable mapping each event to the corresponding
statement in the original program. This mapping is necessary
for later producing information flow paths at source-code
level that help understand vulnerability details.

In accordance with the three types of LISR statements
(§3.2.1), three types of execution events (i.e., line, call, and
return) are probed for: [x =]e∗ | [x =] f (e∗) | return e. An
expression e can be a symbol x indicating a data type (e.g.,
integer), a constant C indicating the address of a reference/-
pointer variable, or the ε. The event content stores the asso-
ciated (LISR) statement itself. Importantly, for a variable of
a non-primitive type, its address, rather than the symbol (lit-
eral), should be probed for. This address is used by the IFC to
compute aliases hence information flow accurately.

3.3.2 Information Flow Computation (IFC) (Step 2.2)
In this step, POLYCRUISE computes run-time information
flow on the fly, by incrementally constructing a dynamic infor-
mation flow graph (DIFG) from the execution events buffered
in the shadow event queue (Figure 2). Given that real-world
systems typically run in multiple threads, our design accounts
for flow facts induced by multi-threading.
Definition. Suppose the P′ execution consists of a set of
threads Φ = {ϕ1, ...,ϕn}, which may share code and/or data
(via global/shared variables). The DIFG for the execution is a
directed graph GΦ = 〈Gϕ

∗,s∗, t∗〉, ϕ ∈Φ, consisting of a set
of thread graph Gϕ each starting from an entry s and an exit
t. A thread graph Gϕ consists of a set of function graph G f
connected via interprocedural (call or return) edges, where
each G f consists of a set of nodes mapped one-to-one to the
underlying event sequence~e.~ek denotes the k-th event in~e.

Each DIFG node represents one of the execution events.
Each edge, of one of four types below, represents a flow fact.

• Interthread control flow edge. An edge of this type connects
two nodes that represent two events ~ei ∈ ϕm and ~e j ∈ ϕn,
where ~ei is a call event for thread creation,~e j is the first
event in ϕn, and ϕm is the predecessor (creator) of ϕn.

• Intra-thread control flow edge. This includes intra- and in-
terprocedural (function graph) control flow edges. Given
two events~ei and~e j in the same thread,~ei→~e j is an intra-
procedural control flow edge if~ei and~e j happend in order
in the same function. If~ei is a call event and~e j indicates
the entry of the corresponding callee,~ei →~e j is an inter-
procedural (call) edge. If~ei is a return event and~e j is the
call event corresponding to the callsite associated with that
return,~ei→~e j is an interprocedural (return) edge.

• Interthread data flow edge. Given two events~ei ∈ ϕi and
~e j ∈ ϕ j that happened sequentially in time,~ei →~e j is an
interthread data dependence edge if U(e j) ⊆ D(ei) while
U(e j) includes a shared or global variable use and D(ei) in-
cludes the latest def of the variable. U(~ek) and D(~ek) denotes
the use and def set of the statement where~ek happened.

• Intra-thread data flow edge. This includes intra- and in-
terprocedural (function graph) data flow edges. Given two
events~ei and~e j that happened in the same thread while sat-
isfying U(e j)⊆ D(ei),~ei→~e j is an intra-procedural data
flow edge if ~ei and ~e j happened sequentially in the same
function. If ~ei is a call event and ~e j happened within the
corresponding callee,~ei →~e j is an interprocedural (call)
edge. If~ei is a return event and~e j is the call event corre-
sponding to the callsite associated with that return,~ei→ e j
is an interprocedural (return) edge.

DIFG construction. Algorithm 5 outlines the major steps for
constructing the DIFG incrementally—updating it once per
event. Upon receiving an event~ek, the algorithm first decodes
the event content, gets/updates the enclosing thread graph Gϕ

(i.e., for the thread in which ~ek occurred), and retrieves the
enclosing function graph (Lines 2–4). It then allocates a new

Algorithm 5: Construct DIFG incrementally
Input:~ek : an execution event ∈~e, ϕ: the no. of thread containing~ek
Output: GΦ: the updated DIFG

1 Function constructDIFG (~ek , ϕ)
2 event ← decodeEvent (~ek);
3 Gϕ ← getOrAddGraph (event, ϕ);
4 G f ← getFuncDIFG (Gϕ, event);
5 CurNode← newNode (Gϕ, event);
6 PreNode← getPreNode (Gϕ);
7 if G f == NULL then
8 G f ← addFuncDIFG (Gϕ, event);
9 if PreNode == NULL then

10 createItcfgEdge (GΦ, Gϕ) // compute interthread control flow

11 else
12 TailNode f ← getTail (G f);
13 createCfgEdge (TailNode f , CurNode);// add intra-procedural control flow

14 while TailNode f != NULL do
15 if U(CurNode)⊆ D(TailNode) then
16 createDDEdge (TailNode f , CurNode);
17 break; // done computing intra-procedural data flow

18 TailNode f ← TailNode f ->previous
19 if IsCallEvent(~event) then
20 Gcallee ← getFuncDIFG (Gϕ, event);
21 createCfgEdge (G f , Gcallee); // compute interprocedural control flow

22 createDDEdge (G f , Gcallee); // compute interprocedural data flow

23 computeGlobalDD (GΦ, CurNode);// data flow due to global/shared variables

1 T g
2 set (v) {g = v}
3 T1 () { set (1)}
4 T2 () { put (g)}
5 Entry () {
6 Thread (T1)
7 Thread (T2)
8 Join ()
9 }

Entry

Thread(T1)

Thread(T2)

T1

set (1)

join

End

set

g = v

Call

Return

T2

put(g)

T1 starts before T2

Figure 7: An example DIFG (right) for a program (left).

node CurNode for this event and gets its predecessor in Gϕ

(Lines 5–6). If G f for~ek does not exist, meaning~ek is the first
event of the current function, a new G f would be created; this
also indicate ~ek is the first event of the current thread, thus
an interthread control flow edge would be created also (Lines
7–10). If G f already exists, the intra-procedural control and
data flow edges would be first added if any (Lines 12–17);
if moreover E is a call event, the DIFG of the callee Gcallee
would be obtained, and interprocedural control and data flow
edges would be added (Lines 19–22). In the end, if U(~ek)
contains references to shared or global variables, global data
dependence would be computed and added (Line 23).

Figure 7 shows the DIFG (right column) of an example
program (left column). The example code contains a global
variable g, a main thread, and two sub-threads where we as-
sume thread T 1 starts before T 2. The DIFG includes three
sub-graphs corresponding to the three threads. The green
(arrowed) lines represent the interthread control flow edges,
while the red one is the interthread data flow edge because
T 2 reads g after the write/def of g in T 1. The blue edge in-
dicates an interprocedural data flow edge between the main
procedure of T 1 and the function set. The remaining black
lines represent control flow edges in individual threads.

3.3.3 Vulnerability Detection (plugins) (Step 2.3)
The dynamic information flow computed in Step 2.2 can sup-
port the general source-sink problem. To show the practical
usefulness of our technique, we focus on vulnerability detec-
tion based on the DIFA in POLYCRUISE. According to the
various sources and sinks relevant to various information flow
security vulnerabilities, different detector plugin works by
computing the information flow paths between those sources
and sinks through a traversal (i.e., a reachability analysis) on
the (most recently updated) DIFG. As the DIFG is incremen-
tally constructed/updated, vulnerabilities are also reported as
(security) bugs (Figure 2) in an incremental manner.

4 Implementations and Limitations

We have implemented POLYCRUISE for Python-C programs
and seven plugins each detecting one type of information flow
vulnerabilities. More details are in Appendix A.
LISR translations. To support Python-C programs, we im-
plemented the LISR translator for C on top of LLVM [30],
and that for Python by reusing the code normalization module
of PyPredictor [72] but with significant enhancement. Specif-
ically, the translator for C walks through the LLVM interme-
diate representation (IR) produced by the compiler frontend
(Clang) while translating the IR code to LISR, following
the syntax described in §3.2.1. In the LISR translator for
Python, we reused the code normalization module of PyPre-
dictor, which translates Python sources into their static single
assignment (SSA) form under Python 2.7 and generates a cor-
responding abstract syntax tree (AST). We upgraded the tool
to support higher versions of Python (3.6+) and translated the
source with SSA form into LISR on top of AST. For Python
code that uses object-oriented programming, we translated
each class member M in the form of class.M.
Symbolic dependence analysis. We implemented SDA as
a simplified symbolic execution engine with C++ since no
branches exist in the LISR of the two language units except
for function invocations. SDA aims to compute all possible
statements reachable from the criteria in each language unit.
Hence, to ensure full analysis of data flow across different
language units without compromising the overall scalability
of POLYCRUISE, we did a two-level SDS implementation for
entry functions in different language units.

At the first level, we adopt a conservative computation
that assumes all parameters of entry functions are reachable
from the criteria. Specifically, for each language unit, SDA
computes invocation relationship among functions; then SDA
considers the functions invoked by no other functions as entry
functions and initializes their SDSs as -1. Such an implemen-
tation would result in redundant instrumentation but cover all
possible data flow paths across languages. The POLYCRUISE
users can define the second level SDS; they can customize
the SDS for each language interface through configuration.
Only the data flow paths that users are interested in will be

covered. Guided by these SDSs and user-defined criteria, the
results of SDA can cover all possible statements.

Instrumentation. With the SDA results, we implemented an
LLVM pass [30] to instrument the C sources statically, partly
reusing our whole-program C analysis tool PCA [37]. The
execution event is constructed following the format defined in
Figure 6. For Python components, we utilized a Python built-
in tracing API (sys.settrace) for dynamic instrumentation
based on the SDA results. Combining the AST generated
earlier and dynamic stack information, we obtain details of
statements during runtime and construct the events following
the syntax. For simplicity, we implemented the tracing module
as a C library such that the two kinds of language units can
integrate directly.

Run-time monitoring. The run-time monitors, for both in-
memory tracing and event buffering, are implemented as a
C library that can be linked to foreign components of main-
stream languages (e.g., Python, Java, Ruby). Accordingly, the
probes for run-time events are instrumented as simple func-
tion calls, a common approach to instrumentation in dynamic
analysis [12, 19]. The shadow event queue is implemented as
a bidirectional circulation queue initialized in shared memory.

Online dynamic analysis. To support multi-threaded execu-
tions, we tagged each execution event with the corresponding
thread id. Also, the shadow event queue is implemented in
a thread- and process-safe manner to avoid undesirable in-
terference with the original execution of real-world systems.
To minimize the run-time overhead of the online analysis,
we implemented a high-performance memory database using
hash algorithms and scalable memory pools.

To enable evaluation and practical security applications of
POLYCRUISE, we have implemented seven plugins for de-
tecting seven types of vulnerabilities as defined in the CWE
catalog [48] (i.e., sensitive data leak, control flow integrity,
partial comparison, buffer overflow, integer overflow, and di-
vide by zero). We also curated a set of sources/sinks for each
plugin according to respective SDKs and libraries of Python
and C. Our implementation allows users to flexibly customize
the source/sink lists and plugin usage options (through the
user configuration X, as shown in Figure 2).

Supporting other languages. Real-world multilingual sys-
tems may use a great variety of combinations of different
languages. Developing an analysis specific to each combina-
tion (e.g., Java-C) is not a scalable or desirable solution. Our
design facilitates adding support for other languages (and ac-
cording new combinations) into the current implementation.

Specifically, to support another language L , only two parts
need to be added: (1) a LISR translator for L and (2) an in-
strumenter that probes an L program for the kinds of run-time
data needed (as described in §3.3.1) according to results of
the (language-agnostic) SDA on the program’s LISR. Imple-
menting both parts can be eased by a basic analysis utility
for L that supports syntactic parsing and instrumentation. As

discussed earlier, if L is an interpreted/dynamic language,
part (2) may need to be done at runtime.

Other VR support roles. As a cross-language DIFA,
POLYCRUISE can work in other roles for vulnerability re-
sponse (VR). For example, it may be enhanced by a test-input
generator (e.g., fuzzer), which would produce additional, di-
verse run-time inputs to help POLYCRUISE potentially dis-
cover more vulnerabilities, as a result of increased coverage
of the executions it analyzes.

On the other hand, POLYCRUISE can be leveraged to en-
hance a test-input generator (e.g., a greybox fuzzer) to gen-
erate test cases more effectively. For instance, POLYCRUISE
can compute accurate data flow information between the
source/sink pairs that are relevant to a taint-guided fuzzer.
Then, the fuzzer may utilize the flow information to tune its
evolution direction, informing seed scheduling and where to
mutate and how. In particular, one may use POLYCRUISE to
capture the dependency between seed inputs (sources) and
branch variables or dangerous functions (sinks); the seeds on
which more such sinks are dependent would be prioritized
during seed selection and/or assigned with greater power.

Limitations. To deal with practical challenges with the online
DIFA due to the complex and diverse interoperations (e.g.,
data encapsulation and conversion) between languages, the
current implementation is field-insensitive. As a result, the
DIFA results are not always precise and, accordingly, the
vulnerabilities detected can be false positives.

In addition, while we managed to support most if not all
language features of Python 3.x and validated so for Python
3.7, there might still be other features that are not well sup-
ported at this point. The evolution of such features may cause
undesirable behaviors of POLYCRUISE. Also, explicit support
for multi-process executions [10, 20] is not implemented yet.

Like a typical DIFA, POLYCRUISE only computes informa-
tion flow exercised in the particular program executions con-
sidered. Thus, its ability to discover vulnerabilities is limited
to those that are covered in the analyzed executions. This abil-
ity is additionally subject to the coverage of the sources and
sinks considered and covered in the executions. Thus, from a
general vulnerability detection’s perspective, POLYCRUISE
also suffers false negatives.

The current design of LISR focuses on capturing data de-
pendence information (def/use). As a result, POLYCRUISE
only computes explicit information flow hence would miss
vulnerabilities solely induced by implicit information flow.

5 PyCBench: A Multilingual Microbench

Evaluating the precision and recall of a multilingual code anal-
ysis (e.g., DIFA) needs a multilingual benchmark suite that
comes with ground truth for the analysis. Yet such a bench-
mark suite is not available, while curating the ground truth
for large/complex, real-world programs may not be feasible.

Table 1: Distribution of PyCBench by analysis features: gen-
eral flow (GenF), global flow (GF), field sensitivity (FieldSen),
ObjectSensitivity (ObjSen), dynamic invocation (DynInv).

Vulnerability Type GenF GF FieldSen ObjSen DynInv Total
Sensitive data leak 7 5 4 2 2 20
Code injection 1 1 0 0 0 2
Buffer overflow 1 2 2 1 1 7
Division by zero 1 0 0 1 0 2
Integer overflow 1 0 2 5 1 9
Incomplete comparison 3 1 0 0 0 4
Control-flow integrity 1 0 0 1 0 2
Total 15 9 8 10 4 46

We thus took the first step to manually create PyCBench,
a microbench for multilingual program analysis, including
but not limited to DIFA. As shown in Table 1, PyCBench
consists of 46 benchmarks, covering seven common types
of vulnerabilities (shown in the first column). We created
the benchmarks for each vulnerability type by summarizing
the patterns of those vulnerabilities in reference to the cor-
responding CWE descriptions [48]. These benchmarks were
also selected purposely to cover five analysis features (listed
in the first row) that we believe a multilingual code (static or
dynamic) analyzer should consider handling.

Currently, PyCBench only includes Python-C programs
and one test for each. We will maintain and augment it by in-
cluding more benchmarks and test cases while covering other
language combinations. The current version of PyCBench is
included in our open-source package for POLYCRUISE.

6 Evaluation

Using our POLYCRUISE implementation (§4), the evaluation
of our approach was guided by four questions below:

RQ1 How effective is POLYCRUISE in terms of its precision?
RQ2 How efficient is POLYCRUISE in terms of its costs?
RQ3 Can POLYCRUISE find real-world vulnerabilities?
RQ4 How does POLYCRUISE compare to peer tools?

6.1 Experiment Setup
In addition to PyCBench (Table 1), we also evaluated
POLYCRUISE against 12 real-world multilingual systems
written in Python and C as primary languages and the original
test cases. Table 2 summarizes these systems as our sub-
jects (1st column), including the total code size (2nd column),
percentage of code written in each language (3rd and 4th
columns), and the number of tests used (last column).

All of these 12 systems were downloaded from GitHub. For
better benchmark representativeness, we developed a crawler
to select multilingual projects that (1) has 1,000+ stars, which
indicates popularity—a criterion used in prior work [62], (2)
is developed mainly in Python and C (or C++), with each
language’s unit size accounting for 30%+ of the total project
size, (3) is frequently updated and maintained, (4) has a rich
set of test cases, indicating potentially good code quality, and

Table 2: Real-world multilingual systems used as our subjects
Benchmark Size (KLOC) C/C++% Python% #Tests
Bounter [6] 3.5 48.2% 50.9% 190
Immutables [24] 5.9 55.0% 44.3% 152
Simplejson [26] 6.4 37.6% 59.8% 31
Japronto [53] 9.4 50.4% 48.2% 15
Pygit2 [40] 17.0 57.4% 44.6% 241
Psycopg2 [54] 27.5 50.8% 48.2% 198
Cvxopt [14] 56.0 60.8% 39.0% 78
Pygame [55] 207.0 54.3% 44.7% 324
PyTables [57] 219.8 52.1% 46.6% 6,355
Pyo [2] 259.1 50.8% 48.8% 51
NumPy [49] 919.7 36.1% 63.7% 16,002
PyTorch [61] 6,419.2 56.2% 35.2% 4,146

(5) comes with detailed documentation for quick installation,
use, and testing. More details on each benchmark can be
found via the link (1st column Table 2) to its repository.

For a reasonable run-time coverage of each subject, we
focused on integration tests provided with it. To run these
tests under POLYCRUISE, we customized the Pytest [58] and
Unittest [60] frameworks such that we can automate the test
execution while performing the analyses in POLYCRUISE.
We also developed a tool to automatically extract sources
and sinks used as the default source/sink configuration. These
additional utilities help increase the usability of POLYCRUISE
and its capabilities for vulnerability discovery with respect to
the run-time inputs available (i.e., without augmenting them).

6.2 Experimental Methodology
We evaluated the effectiveness of POLYCRUISE on both Py-
CBench and the five least complex real-world benchmarks
against all their test cases. For each benchmark and test, we
traced the kinds of run-time data described earlier at every pro-
gram statement. Then, by inspecting the trace while referring
to the benchmark source code, we identified all possible paths
between each of the predefined source/sink pairs. Using these
paths as ground truth, we computed the precision and recall
of POLYCRUISE for that benchmark and test. This precision
is purely based on source-sink reachability. We further com-
puted precision under security context by only considering
exploitable paths as true positives.

For each case in both the manual precision/recall evalua-
tions, three of the authors each obtained results independently,
followed by a confirmation process based on cross-validation.
We confirmed a result only when all the three agreed on it.

We assessed the efficiency and scalability of POLYCRUISE
for its static and dynamic analysis part separately. In particular,
for Phase 1, we measured the time and peak memory cost of
the SDA, which overwhelmingly dominated the total cost of
this phase—the costs of the other two steps are comparatively
negligible, as both technically anticipated and empirically
validated. Thus, for this phase, we only report SDA costs. For
Phase 2, we compared the run-time slowdown on the same
two cost measures (i.e., time and peak memory) among three
versions of each benchmark against ten randomly selected

tests: the original (pure-version), the instrumented with SDA
guidance (SDA-version), and the entirely (every-statement)
instrumented (CMPL-version). This procedure allowed for
an in-depth evaluation of the efficiency impact of the SDA
(Step 1.2), by comparing run-time slowdown among the three
versions per benchmark.

We are not aware of a DIFA working with Python-C pro-
grams. Thus, for peer comparison, we used the closest, state-
of-the-art baselines we can find: PyPredictor [72], a Python
analyzer, and libdft [27], a C/C++ dynamic taint analyzer.
Neither is originally comparable, thus we did extra develop-
ment/setup as detailed below. We did try to compare with
several other tools that claimed to support cross-language
analysis. Unfortunately, few of them are publicly available
online (e.g., Truffle [29]) and actually usable.
PyPredictor. This is an analyzer of Python programs combin-
ing dynamic tracing and static symbolic execution to predict
potential bugs (e.g., AttributeError, TypeError). It runs the
given program against its given tests to collect modules in-
volved in the execution. Then, it normalizes the code of these
modules into their SSA form and executes the normalized
program again to collect run-time traces. With these traces
as inputs, it conducts predictive analysis based on symbolic
execution to explore bugs on all possible execution paths.

To enable comparison with it, we developed and set up
a modified version of PyPredictor that is compatible with
Python 3.7. Moreover, we improved its normalizing module
to support some standard Python features (e.g., GeneratorExp,
BoolOp, Call) and a few others (e.g., AnnAssign, AsyncFunc-
tionDef, Try [59]). We then developed a plug-in based on
POLYCRUISE to detect TypeError bugs for Python programs.
libdft. This is designed for dynamic data flow tracking based
on the Intel PIN framework [25]. It dynamically instruments
the target binary and tracks the taint flow for every executed
instruction with a set of predefined taint propagation rules
(i.e., external API calls). This design brings huge run-time
overhead that hurts its scalability in real-world applications.

To enable comparison, we built a dynamic taint analyzer
on libdft based on PIN 3.7. We added APIs for arithmetic
instructions (e.g., ADD, SUB, DIV) to detect integer-overflow
and divide-by-zero vulnerabilities. For CALL instructions,
we added rules to check the taint tags and sinks, targeting
vulnerabilities such as buffer overflow and data leakage.

We ran all of our experiments on an Ubuntu 18.04 worksta-
tion with an Intel i7-10875H CPU and 16GB RAM.

6.3 RQ1: Effectiveness of POLYCRUISE

Results on PyCBench. As Table 3 shows, POLYCRUISE re-
ported all the true-positive paths. It additionally reported three
false positives, including two in the field sensitivity group and
one in the object sensitivity group. This was anticipated as our
current implementation drops field-insensitivity for better lan-
guage independence (§4), and the dynamic instrumenter (for

https://github.com/RaRe-Technologies/bounter
https://github.com/immutables/immutables
https://github.com/simplejson/simplejson
https://github.com/squeaky-pl/japronto
https://github.com/libgit2/pygit2
https://github.com/psycopg/psycopg2
https://github.com/cvxopt/cvxopt
https://github.com/pygame/pygame
https://github.com/PyTables/PyTables
https://github.com/belangeo/pyo
https://github.com/numpy/numpy
https://github.com/pytorch/pytorch
https://sites.google.com/site/pypredictor/
https://github.com/AngoraFuzzer/libdft64
https://sites.google.com/site/pypredictor/
https://sites.google.com/site/pypredictor/
https://github.com/AngoraFuzzer/libdft64
https://github.com/AngoraFuzzer/libdft64

Table 3: Effectiveness results of POLYCRUISE on PyCBench,
including #inter-language paths (INT-LP), #Intra-language
paths (ITR-LP), #false negatives (FN), #false positives (FP)

Group #INT-LP #ITR-LP #FN #FP
General flow 10 4 0 0
Global flow 9 0 0 0
Field sensitivity 8 0 0 2
Object sensitivity 9 2 0 1
Dynamic invocation 4 0 0 0
Total 40 6 0 3

Table 4: Effectiveness results of POLYCRUISE on real-
world projects. Pg: #ground-truth paths, Pp: #paths found
by POLYCRUISE, TP: true positive, TPsc: true positive in se-
curity context, FN: false negative, RC: recall, PI: precision,
PIsc: precision under security context.

Benchmark Pg Pp #TP #TPsc #FN RC PI PIsc
Bounter 3 3 3 2 0 100% 100% 66.7%
Immutables 2 2 2 1 0 100% 100% 50%
Japronto 1 1 1 1 0 100% 100% 100%
Cvxopt 5 7 5 4 0 100% 71.4% 57.5%
Pyo 4 4 4 2 0 100% 100% 50%
Summary 15 17 15 10 0 100% 88.2% 58.8%

Python) is presently object-insensitive. These false positives
could be eliminated by tuning the implementation.

As a result, POLYCRUISE achieved 93.5% precision and
100% recall on PyCBench. Although the micro-benchmarks
can not represent all real-world application scenarios, com-
mon program analysis features have been considered in the
design of PyCBench to help assess the analysis soundness
and accuracy. Thus, these numbers are still encouraging for
the merits of POLYCRUISE for cross-language analysis.
Results on real-world benchmarks. Table 4 shows the ef-
fectiveness results of POLYCRUISE on the five real-world
projects. For the total of 486 tests, we obtained 15 paths as
ground truth by manual validation. Among the 17 paths gener-
ated by POLYCRUISE, 15 were validated to be true positives,
leading to a precision of 88.2% and a recall of 100% overall.
The two false positives in Cvxopt were caused by the field-
insensitivity of our current POLYCRUISE implementation as
illustrated in Figure 12. Moreover, we validated that 10 of
the potential vulnerabilities induced by the 15 paths were
exploitable, leading to a security-context precision of 58.8%.

POLYCRUISE achieved 93.5% and 88.2% precision on our
microbench and real-world systems, respectively, with a per-
fect recall for both, hence promising effectiveness.

6.4 RQ2: Efficiency of POLYCRUISE

Since the PyCBench programs are small and their executions
(against the tests we curated) are simple, we gauged the effi-
ciency of POLYCRUISE just on the 12 real-world benchmarks.
As seen from Table 2, these benchmarks include very-large

Table 5: Efficiency of SDA in terms of time cost (SDA-T),
peak memory (SDA-M), and instrumentation rate (Instm%).

Benchmark SDA-T (seconds) SDA-M (MB) Instm%
Bounter 0.02 2.97 52%
Immutables 0.04 4.68 50%
Simplejson 0.03 4.47 56%
Japronto 0.02 3.89 47%
Pygit2 0.13 14.54 43%
Psycopg2 0.14 15.32 57%
Cvxopt 1.21 35.52 52%
Pygame 2.27 85.32 44%
PyTables 2.45 101.11 51%
Pyo 20.21 258.73 62%
NumPy 10.99 557.95 48%
PyTorch 175.19 7,414.95 51%

scale systems like PyTorch and NumPy. The basis of our
efficiency study is 8.1 million lines of code.

A key metric of efficiency in our study is the run-time
slowdown incurred by the dynamic analysis in POLYCRUISE.
Due to the complexity of multilingual system executions, we
used a calibrated method to compute this metric, as detailed
in Appendix B. Next, we present our results on this and other
efficiency metrics (as laid out in §6.2).

Efficiency of SDA. Table 5 shows the efficiency results of the
SDA step which dominates the total costs of Phase 1. Overall,
although its time and memory cost increased with greater
subject size, the SDA finished in three minutes at most, for
our largest subject system PyTorch (of 6 million lines of code).
For most of the other (smaller) subjects, the SDA finished in
just a few seconds or milliseconds.

For systems of 220KLOC or smaller, the SDA only took
<100MB memory at peak, which is almost negligible on mod-
ern computing platforms. For larger systems, the peak mem-
ory was 260MB or more. The highest memory cost was seen
by PyTorch, which was over 7.4GB hence may or may not be
acceptable on a modestly-configured computer. However, for
a system at this scale, the peak memory is still reasonable.

Recall that the inclusion of the SDA step in Phase 1 was
mainly justified by its efficiency merits in reducing the static/-
dynamic instrumentation scope. Now, to quantify these merits,
we computed another efficiency metric, instrumentation rate,
which is the percentage of code lines instrumented as guided
by symbolic dependencies (i.e., the SDA results). As shown in
Table 5, the SDA reduced the instrumentation by 57% in the
best case (Pygit2). Even in the worst case (Pyo), the reduction
was still substantial (38%). The main reason that the reduction
was not even greater was that we chose to be conservative
with the SDA to ensure the resulting symbolic dependencies
to be a safe approximation of the dynamic information flow
against any possible execution of the system under analysis.

Run-time slowdown and memory usage. Figure 8 com-
pares the run-time slowdown (for the ten executions) incurred
by POLYCRUISE as seen by the SDA- versus CMPL-version
of each of the 12 real-world benchmarks. The baseline costs

https://github.com/RaRe-Technologies/bounter
https://github.com/immutables/immutables
https://github.com/squeaky-pl/japronto
https://github.com/cvxopt/cvxopt
https://github.com/belangeo/pyo
https://github.com/cvxopt/cvxopt
https://github.com/RaRe-Technologies/bounter
https://github.com/immutables/immutables
https://github.com/simplejson/simplejson
https://github.com/squeaky-pl/japronto
https://github.com/libgit2/pygit2
https://github.com/psycopg/psycopg2
https://github.com/cvxopt/cvxopt
https://github.com/pygame/pygame
https://github.com/PyTables/PyTables
https://github.com/belangeo/pyo
https://github.com/numpy/numpy
https://github.com/pytorch/pytorch
https://github.com/pytorch/pytorch
https://github.com/pytorch/pytorch
https://github.com/libgit2/pygit2
https://github.com/belangeo/pyo

Figure 8: Run-time slowdown (y axis) on the SDA-version
versus the CMPL-version of real-world benchmarks (x axis).

Figure 9: Peak memory usage (y axis) on the SDA-version
versus the CMPL-version of real-world benchmarks (x axis).

were from the pure-versions. The error bars indicate the stan-
dard errors associated with the means.

Compared to the pure-versions, the SDA-versions were
2.71x (for Pygit2) to 11.96x (for PyTorch) slower. From Ta-
ble 5 we saw that POLYCRUISE achieved a lower instrumenta-
tion rate on Pygit2 (43%) than it did on PyTorch (51%), which
partly explains the smaller slowdown factor POLYCRUISE
had with Pygit2 at runtime. Another reason lies in the com-
plexity of the executions. Indeed, the PyTorch executions
were much more computationally complex hence expensive
than the executions of other benchmarks like Pygit2. One
straightforward measure of this complexity for an execution
is the number of events in the execution. We found that 55 mil-
lion events were generated on average across the ten PyTorch
executions, significantly more than the numbers of events in
other benchmarks’ executions.

In terms of (peak) memory usage, as shown in Figure 9,
the overall online analysis in POLYCRUISE only used a small
amount of memory in absolute terms. For all system exe-
cutions except for those of the largest system PyTorch, the
memory use was no more than 30MB. Even in the worst case
(with PyTorch), the peak memory was 1GB, which is still
acceptable on modern computers.

On the other hand, both the run-time slowdown and peak
memory usage as seen by the SDA-versions were much
smaller than those seen by the CMPL-versions, as contrasted
in Figures 8 and 9. Specifically, the SDA improved the reduc-
tion of slowdown factor from 18.3% (in Japronto) to 66.2%
(in PyTorch), and reduced the memory usage by 16.2% (in

Table 6: Three types of new vulnerabilities discovered by
POLYCRUISE: Integer-overflow (IntOf), Buffer-overflow (Bu-
fOf), and Incomplete-comparison (InCc).

Benchmark #IntOf #BufOf #InCc #Fixed #Confirmed #Pending #CVEs
Bounter 0 1 0 1 0 0 1
Immutables 0 1 0 0 0 1 0
Japronto 0 1 0 0 0 1 0
Cvxopt 0 0 4 4 0 0 1
Pyo 0 2 0 2 0 0 2
NumPy 1 3 1 1 3 1 4
Summary 1 8 5 8 3 3 8

Japronto) to 67.1% (in Cvxopt), compared to whole-system
instrumentation with any scope reduction.

POLYCRUISE took mostly a few seconds (and 3 mins at
worst) for its static analyses, while its online dynamic anal-
ysis incurred 2.71∼11.96x slowdown and used a moderate
amount of memory. The static analyses helped improve the
efficiency of the dynamic analysis significantly.

6.5 RQ3: Vulnerability Discovery
From the subject executions considered in RQ1 through RQ3,
POLYCRUISE identified 14 new vulnerabilities related to five
of the real-world benchmarks, as listed in Table 6. We filed
issues for these findings on corresponding GitHub reposito-
ries. At the time of writing, the respective developers have
confirmed 11 and fixed 8 of them. We illustrate with one of
the fixed cases and one of the other confirmed cases.
Case 1: Buffer overflow. In the integration-test execution of
NumPy, this fixed case is a risk point of buffer overflow, as
depicted in Figure 10. The user input is the shape of an array,
which can be arbitrary. This input is taken from a file as the
source then passed through the API numpy.zero. Python in-
terpreter wraps the data as a PyObject and takes it as an argu-
ment to the C function array_zeros. The function decodes
the arguments, gets the value of shape, and passes dimension
(shape.len) to another function PyArray_Zeros as argument
nd. Eventually in the function PyArray_NewFromDescr_int,
the variable nd is used in memcpy to specify the number of
bytes to copy. Since the target newstrides is a fixed-size stack
buffer, buffer overflow will happen when the shape length
propagated from Python is larger than expected here.
Case 2: Incomplete string comparison. During a NumPy
integration-test execution, a vulnerability of incomplete string
comparison was found as depicted in Figure 11. At the source,
the user input was read into the variable Shape and Type in
the Python function test_functionality, passed through
the NumPy API numpy.empty, and flowed forward into the
C function array_empty where the dtype object is passed
into PyArray_DescrConverter for parsing. As the object
propagated into _convert_from_str, the type description is
extracted and used as the first argument in strncmp. Since
the terminator of the string is not considered, the comparison
result may not be the same as expected. More seriously, it can
be exploited to cause the API to change its control flow (i.e.,
causing it to deny services by “goto fail").

https://github.com/libgit2/pygit2
https://github.com/pytorch/pytorch
https://github.com/libgit2/pygit2
https://github.com/pytorch/pytorch
https://github.com/libgit2/pygit2
https://github.com/pytorch/pytorch
https://github.com/libgit2/pygit2
https://github.com/pytorch/pytorch
https://github.com/pytorch/pytorch
https://github.com/pytorch/pytorch
https://github.com/squeaky-pl/japronto
https://github.com/pytorch/pytorch
https://github.com/RaRe-Technologies/bounter
https://github.com/immutables/immutables
https://github.com/squeaky-pl/japronto
https://github.com/cvxopt/cvxopt
https://github.com/belangeo/pyo
https://github.com/numpy/numpy
https://github.com/squeaky-pl/japronto
https://github.com/cvxopt/cvxopt
https://github.com/numpy/numpy
https://github.com/numpy/numpy
https://github.com/numpy/numpy

Figure 10: New vulnerability case 1: risk of buffer-overflow.

Table 7: POLYCRUISE vs PyPredictor: POLYCRUISE can find
the same defects (type errors) for Python programs. Sizes are
in KLoC; T/M denotes Time (seconds)/Memory (MB).

Benchmark Size Issue# POLYCRUISE PyPredictor
Identify T/M Identify T/M

request [64] 42.7

2638 X 1.2/15.1 X 41.6/20.3
2639 X 1.3/14.9 X 35.1/19.5
2267 X 0.6/14.8 X 13.2/15.1
2613 X 0.8/14.8 X 28.4/21.7

fabric [17] 4.3
1303 X 0.6/11.6 X 1.4/6.1
1906 X 0.7/11.6 X 1.1/4.9
1191 X 0.7/11.6 X 2.5/6.5

salt [65] 70.9 24820 X 2.3/18.3 X 83.6/33.3
25006 X 2.4/18.5 X 89.8/33.5

web2py [68] 93.1 968 X 0.8/12.1 X 4.2/10.3

Exploitability. To demonstrate that the vulnerabilities discov-
ered by POLYCRUISE are exploitable, we have developed a
proof-of-the-concept (PoC) exploit for each of the (11) vulner-
abilities that have been confirmed by developers so far, found
here. For each PoC, a script that triggers the vulnerability and
the corresponding run-time output are provided.

POLYCRUISE discovered 14 new vulnerabilities in six real-
world multilingual systems, with 11 confirmed and 8 fixed;
all of these were cross-language vulnerabilites.

6.6 RQ4: Comparison with peer tools
Comparison with PyPredictor. We compared our fixed ver-
sion of PyPredictor with POLYCRUISE against four popular
Python benchmarks (with 10 type error defects as ground
truth) used in the original evaluation of PyPredictor, in
terms of efficiency and effectiveness. As shown in Table 7,

Figure 11: New vulnerability case 2: incomplete comparison.

POLYCRUISE detected all the 10 bugs as the fixed PyPredic-
tor did. In terms of efficiency, PyPredictor took significantly
more time and memory in most cases due to the symbolic
execution. For the benchmark fabric [17], POLYCRUISE al-
located more memory as it created a fixed-size event queue
during initialization, although only a tiny portion of the allo-
cated space was actually used.
Comparison with libdft. We carefully selected four widely
used C programs as the benchmarks in the comparison as
shown in Table 8. In all four of these programs, there are
defects that have been reported as CVEs, which are regarded
as ground truth to compare these two tools. In terms of effec-
tiveness, POLYCRUISE succeeded in identifying all known
vulnerabilities when corresponding source/sink pairs are
configured. For instance, the reason for CVE-2016-1541 in
libarchive is that an external value (defined in the archive
file) reaches memcpy as a buffer size indicator, and no bound-
ary check exists along the data flow path; hence we configured
source/sink pair as (fead, memcpy) and succeeded in detect-
ing this vulnerability. In terms of efficiency, the slowdown
of libdft was 4 to 13 times that of POLYCRUISE while using
10 times more memory by average. The main reason is that
libdft needs to track taint information for most instructions;
this design incurs a significant runtime overhead due to the
corresponding API calls (i.e., predefined propagation rules).

While mainly targeting cross-language DIFA, POLYCRUISE
also outperformed (in cost-effectiveness) state-of-the-art
peer tools for single-language analysis on C and Python.

https://sites.google.com/site/pypredictor/
https://sites.google.com/site/pypredictor/
https://bitbucket.org/wsucailab/polycruise/src/master/Experiments/PoC/
https://sites.google.com/site/pypredictor/
https://sites.google.com/site/pypredictor/
https://sites.google.com/site/pypredictor/
https://sites.google.com/site/pypredictor/
https://github.com/AngoraFuzzer/libdft64
https://github.com/AngoraFuzzer/libdft64
https://github.com/AngoraFuzzer/libdft64

Table 8: POLYCRUISE vs libdft: POLYCRUISE can find the same vulnerabilities and be more efficient for C programs.

Benchmark Size (KLoC) Type CVE ID POLYCRUISE libdft
Identify SD-factor Memory (MB) Identify SD-factor Memory (MB)

openjpeg-2.1.2 [50] 168.8 Division-by-zero CVE-2016-9112 X 3.5 21.4 X 40.3 580.6
libarchive-3.2.2 [39] 233.2 Buffer overflow CVE-2016-1541 X 4.3 33.6 X 17.9 375.2
curl-7.50.1 [13] 127.9 Integer overflow CVE-2016-8620 X 3.1 25.9 X 65.7 51.8
libtiff-4.0.7 [41] 127.1 Integer overflow CVE-2016-10093 X 2.7 13.6 X 11.3 55.3

6.7 Regarding the Vulnerabilities Discovered
The previously known vulnerabilities discovered by
POLYCRUISE have been documented in detail on respective
CVE pages as listed in Table 8. The documentation describes
how the vulnerabilities were disclosed and addressed. Re-
garding each of the 14 new vulnerabilities discovered by
POLYCRUISE, we have contacted the respective developers.
By the time of this paper submission, all of these have been re-
ported to the system vendors, although some of them have not
been confirmed yet, possibly because the developers have not
been active recently. Others have all been confirmed, among
which three have been fixed. The details on each of these 14
vulnerabilities are documented in our artifact package here.

6.8 Effort for Vulnerability Confirmation
Based on our current implementation, additional analysis/-
effort is expected in order to confirm whether a dynamic
information flow path reported by POLYCRUISE actually rep-
resents a true, non-trivial vulnerability.

One reason for requiring such effort is that no sanitization is
currently implemented in the vulnerability detection plugins
(i.e., security application modules). As a result, false alarms
may arise. For example, a reported data flow path between a
source/sink pair may be a false alarm when a boundary check
exists on the control flow from the source to the sink.

Another reason is that a reported path may not be concern-
ing to the user because the source is not sensitive or the sink
is not critical in particular use scenarios. For instance, a data
flow path from a source to a sink indicates a possible sensi-
tive data leakage; however, the data retrieved at the source
may not be sensitive to the user in the specific application
scenario. Such security context factors usually vary across dif-
ferent application scenarios, making it hard for POLYCRUISE
to discern whether the source is actually sensitive or the sink
actually critical. Thus, post-DIFA analysis and confirmation
is generally a necessary additional step.

7 Related Work

Language-independent technique. ORBS [5] claimed sup-
port for analyzing multilingual programs without extra efforts.
It computes a program slice through repeated action called
“delete-execute-observe” on the target system until no more
lines can be deleted. Although the language-independent fea-
ture is appealing, serious scalability issues prevent its appli-
cation in real-world programs; even its improved version [32]
can not scale well yet.

Semantic summarization. Debuting for heap analysis in
C/C++ programs [15], semantic summarization is being ap-
plied to static cross-language analysis with a formally defined
syntax [34, 69]. Unfortunately, the summarization causes pro-
found information loss, leading to low recall. Moreover, com-
plex language semantics is a barrier to the expansion and
application of such techniques.

Unified intermediate representation. For multilingual pro-
gram analysis, pyLang [43] compiles Python programs into
LLVM IR; JLang [74] also succeeds in translating Java code
into LLVM IR. Arzt et al. [3] translated the common inter-
mediate language of the Microsoft .net framework into Jim-
ple. Lopes et al. [42] constructed code property graphs from
WebAssembly code to detect vulnerabilities in it. With the
support of LLVM, several languages (e.g., C/C++/Rust [42],
JavaScript/TypeScript [63]) were compiled into WebAssem-
bly, which then enabled analyses across components of those
languages. However, much engineering work is required to
develop and maintain the compiler for each language, and
many of the prior frameworks have been shown impractical
in our empirical studies due to complex language features.

Dynamic techniques based on virtual machine. Truf-
fle [29] proposed a multi-language dynamic taint analysis
framework supporting the languages JavaScript, Python, and
C/C++ on top of a polyglot virtual machine (GraalVM). How-
ever, three significant issues limit its practicability: (1) imple-
menting a runtime component for each specific language is
laborious and error-prone work. (2) the AST-based runtime
environment can lead to different program behaviors as in a
real environment. (3) efficiency is a severe challenge to this
virtual machine-based technique. DroidScope [73] analyzes
Android malware across Java and native code, which however
relies on runtime customization (via virtualization).

Techniques targeting specific language combinations.
Several prior works [1, 36, 67] addressed defects between
Java and C components, while [4,8,33] focused on bug detec-
tion between Java and JavaScript. Brown et al. [7] proposed
to detect vulnerabilities in JavaScript binding code (in C/C++)
via static analysis, while Favocado [16] achieved that detec-
tion via fuzzing. In [35], symbolic execution across PHP code
and its built-in C functions was realized by converting the
execution results of the PHP code into C code.

In contrast, our approach is significantly different. (1) We
proposed SDA, a language-independent approach that is effec-
tive and efficient for large-scale programs and helps greatly
reduce the runtime slowdown. (2) Our technique uses mini-

https://github.com/AngoraFuzzer/libdft64
https://github.com/AngoraFuzzer/libdft64
https://bitbucket.org/wsucailab/polycruise/src/master/Experiments/PoC/

mal language-specific analysis hence should be transferable
to support new language combinations. (3) Our technique pro-
vides the first practical DIFA across Python and C languages.

8 Conclusion

We presented POLYCRUISE, a novel dynamic information
flow analysis (DIFA) for multilingual systems. Unlike prior
approaches, POLYCRUISE utilizes an efficient and effective
static analysis algorithm—language-independent symbolic
dependence analysis to guide instrumentation hence enabling
language-agnostic DIFA. Moreover, POLYCRUISE takes ad-
vantage of existing single-language analysis techniques and
minimizes the language-specific engineering work. At run-
time, POLYCRUISE adopts online and incremental analysis.
It constructs the whole-program dynamic information flow
graph based on which applications can be developed for vul-
nerability detection and beyond. We empirically demonstrated
POLYCRUISE’s efficiency with practical effectiveness against
micro benchmarks and 12 real-world multilingual systems.

Acknowledgments

We thank our shepherd Yan Shoshitaishvili and the anony-
mous reviewers for their effective guidance and construc-
tive comments. This work was enabled by funding support
from ARO (grant W911NF-21-1-0027) and NSF (grants CCF-
1936522 and CCF-2146233). Jiang Ming was supported by
NSF (grants CNS-1850434 and CNS-2128703).

References
[1] Vitor Afonso, Antonio Bianchi, Yanick Fratantonio, Adam

Doupé, Mario Polino, Paulo de Geus, Christopher Kruegel,
and Giovanni Vigna. Going native: Using a large-scale analy-
sis of android apps to create a practical native-code sandboxing
policy. In NDSS, pages 1–15, 2016.

[2] Ajax. Pyo. https://github.com/belangeo/pyo, 2020.

[3] Steven Arzt, Tobias Kussmaul, and Eric Bodden. Towards
cross-platform cross-language analysis with Soot. In State Of
the Art in Program Analysis (SOAP), pages 1–6, 2016.

[4] Sora Bae, Sungho Lee, and Sukyoung Ryu. Towards under-
standing and reasoning about Android interoperations. In ICSE,
pages 223–233, 2019.

[5] David Binkley, Nicolas Gold, Mark Harman, Syed Islam, Jens
Krinke, and Shin Yoo. ORBS: Language-independent program
slicing. In FSE, pages 109–120, 2014.

[6] Bounter. Web. https://tinyurl.com/4667pnkv, 2017.

[7] Fraser Brown, Shravan Narayan, Riad S Wahby, Dawson En-
gler, Ranjit Jhala, and Deian Stefan. Finding and preventing
bugs in javascript bindings. In S&P, pages 559–578, 2017.

[8] Achim D Brucker and Michael Herzberg. On the static analysis
of hybrid mobile apps. In Engineering Secure Software and
Systems, pages 72–88, 2016.

[9] Haipeng Cai. Hybrid Program Dependence Approximation for
Effective Dynamic Impact Prediction. TSE, 2017.

[10] Haipeng Cai and Xiaoqin Fu. D2ABS: A framework for dy-
namic dependence analysis of distributed programs. TSE, 2021.

[11] Haipeng Cai and Raul Santelices. TracerJD: Generic trace-
based dynamic dependence analysis with fine-grained logging.
In SANER, pages 489–493, 2015.

[12] Haipeng Cai, Raul Santelices, and Douglas Thain. DiaPro:
Unifying dynamic impact analyses for improved and variable
cost-effectiveness. TOSEM, 25(2):1–50, 2016.

[13] CurlSe. Web. https://curl.se, 2020.

[14] Cvxopt. Web. https://tinyurl.com/4k4v9646, 2016.

[15] Isil Dillig, Thomas Dillig, Alex Aiken, and Mooly Sagiv. Pre-
cise and compact modular procedure summaries for heap ma-
nipulating programs. In PLDI, pages 567–577, 2011.

[16] Sung Ta Dinh, Haehyun Cho, Kyle Martin, Adam Oest, Kyle
Zeng, Alexandros Kapravelos, Gail-Joon Ahn, Tiffany Bao,
Ruoyu Wang, Adam Doupé, et al. Favocado: Fuzzing the
binding code of JavaScript engines using semantically correct
test cases. In NDSS, 2021.

[17] Fabric. Web. https://github.com/fabric/fabric, 2020.

[18] Xiaoqin Fu and Haipeng Cai. FlowDist: Multi-staged
refinement-based dynamic information flow analysis for dis-
tributed software systems. In USENIX Security, 2021.

[19] Xiaoqin Fu, Haipeng Cai, and Li Li. Dads: Dynamic Slic-
ing Continuously-Running Distributed Programs With Budget
Constraints. In ESEC/FSE, pages 1566–1570, 2020.

[20] Xiaoqin Fu, Haipeng Cai, Wen Li, and Li Li. Seads: Scal-
able and cost-effective dynamic dependence analysis of dis-
tributed systems via reinforcement learning. TOSEM, 30(1):1–
45, 2020.

[21] GitHub. The 2020 state of the OCTOVERSE. https://
octoverse.github.com/, 2020.

[22] Manel Grichi, Mouna Abidi, Fehmi Jaafar, Ellis E Eghan, and
Bram Adams. On the impact of inter-language dependencies
in multi-language systems. In QRS, pages 509–509, 2020.

[23] John L Hennessy and David A Patterson. Computer architec-
ture: a quantitative approach. 2011.

[24] Immutables. Web. http://immutables.github.io/.

[25] Intel. PIN. https://tinyurl.com/4yuhkd9r, 2020.

[26] Bob Ippolito. Simplejson a JSON encoder/decoder for Python.
https://tinyurl.com/2s4y5hhr, 2020.

[27] Vasileios Kemerlis, Georgios Portokalidis, Kangkook Jee, and
Angelos Keromytis. libdft: Practical dynamic data flow track-
ing for commodity systems. In VEE, pages 121–132, 2012.

[28] Pavneet Singh Kochhar, Dinusha Wijedasa, and David Lo. A
large scale study of multiple programming languages and code
quality. In SANER, pages 563–573, 2016.

[29] Jacob Kreindl, Daniele Bonetta, Lukas Stadler, David
Leopoldseder, and Hanspeter Mössenböck. Multi-language
dynamic taint analysis in a polyglot virtual machine. In MPLR,
pages 15–29, 2020.

https://github.com/belangeo/pyo
https://tinyurl.com/4667pnkv
https://curl.se
https://tinyurl.com/4k4v9646
https://github.com/fabric/fabric
https://octoverse.github.com/
https://octoverse.github.com/
http://immutables.github.io/
https://tinyurl.com/4yuhkd9r
https://tinyurl.com/2s4y5hhr

[30] Chris Lattner and Vikram Adve. LLVM: A compilation frame-
work for lifelong program analysis & transformation. In CGO,
pages 75–86, 2004.

[31] Seongmin Lee, David Binkley, Robert Feldt, Nicolas Gold,
and Shin Yoo. Observation-based approximate dependency
modeling and its use for program slicing. JSS, 2021.

[32] Seongmin Lee, David Binkley, Nicolas Gold, Syed Islam, Jens
Krinke, and Shin Yoo. Evaluating lexical approximation of
program dependence. JSS, 160:110459, 2020.

[33] Sungho Lee, Julian Dolby, and Sukyoung Ryu. Hybridroid:
static analysis framework for android hybrid applications. In
ASE, pages 250–261, 2016.

[34] Sungho Lee, Hyogun Lee, and Sukyoung Ryu. Broadening
horizons of multilingual static analysis: Semantic summary
extraction from C code for JNI program analysis. In ASE,
pages 127–137, 2020.

[35] Penghui Li, Wei Meng, Kangjie Lu, and Changhua Luo. On
the feasibility of automated built-in function modeling for php
symbolic execution. In WWW, pages 58–69, 2021.

[36] Siliang Li and Gang Tan. Finding bugs in exceptional situations
of JNI programs. In CCS, pages 442–452, 2009.

[37] Wen Li, Haipeng Cai, Yulei Sui, and David Manz. Pca: memory
leak detection using partial call-path analysis. In ESEC/FSE,
pages 1621–1625, 2020.

[38] Wen Li, Na Meng, Li Li, and Haipeng Cai. Understanding lan-
guage selection in multi-language software projects on GitHub.
In ICSE-Companion, pages 256–257, 2021.

[39] Libarchive. Library. http://www.libarchive.org, 2020.

[40] Libgit2.org. pygit. https://tinyurl.com/2hpw3pwt, 2014.

[41] Libtiff.org. lib&utilities. http://www.libtiff.org, 2020.

[42] Pedro Daniel Rogeiro Lopes. Discovering vulnerabilities in
WebAssembly with code property graphs.

[43] lukarao. PyLLVM. https://tinyurl.com/yckr397m, 2020.

[44] Philip Mayer and Alexander Bauer. An empirical analysis
of the utilization of multiple programming languages in open
source projects. In EASE, pages 1–10, 2015.

[45] Philip Mayer, Michael Kirsch, and Minh Anh Le. On multi-
language software development, cross-language links and ac-
companying tools: a survey of professional software develop-
ers. JSERD, 5(1):1–33, 2017.

[46] Jiang Ming, Dinghao Wu, Gaoyao Xiao, Jun Wang, and Peng
Liu. Taintpipe: Pipelined symbolic taint analysis. In USENIX
Security, pages 65–80, 2015.

[47] Mitre. CWE-272. https://tinyurl.com/4xwzakyf, 2020.

[48] Mitre. CWEs. http://cwe.mitre.org/, 2020.

[49] NumPy.org. NumPy. https://github.com/numpy/, 2018.

[50] Openjpeg.org. JPEG. https://www.openjpeg.org, 2015.

[51] Oracle. JNI 6.0. https://tinyurl.com/2p94tvhp, 2009.

[52] Oracle. GraalVM. https://www.graalvm.org/, 2021.

[53] Pawel Piotr Przeradowski. Japronto a Python 3.5+ HTTP
toolkit. https://tinyurl.com/v37799mp, 2017.

[54] Psycopg. Web. https://tinyurl.com/27buex7n, 2018.

[55] Pygame. Web. https://tinyurl.com/nhhdtj4f, 2020.

[56] PYPL Index. Web. https://tinyurl.com/2d6tdhs5, 2022.

[57] PyTables. Web. https://tinyurl.com/ywbr9jm3, 2019.

[58] Pytest. Web. https://tinyurl.com/45sajhuw, 2021.

[59] Python. 3.9.2 docs. https://docs.python.org/3.9, 2020.

[60] Python. Unit test. https://tinyurl.com/2fewd6ca, 2021.

[61] PyTorch. Web. https://tinyurl.com/5n8pfv9m, 2016.

[62] Baishakhi Ray, Daryl Posnett, Vladimir Filkov, and Premkumar
Devanbu. A large scale study of programming languages and
code quality in github. In FSE, pages 155–165, 2014.

[63] Micha Reiser and Luc Bläser. Accelerate javascript applica-
tions by cross-compiling to webassembly. In Proceedings
of the 9th ACM SIGPLAN International Workshop on Virtual
Machines and Intermediate Languages, pages 10–17, 2017.

[64] Requests. Web. https://tinyurl.com/3b32x54k, 2020.

[65] Salt. Web. https://tinyurl.com/2p8wnmkr, 2020.

[66] Edward J Schwartz, Thanassis Avgerinos, and David Brumley.
All you ever wanted to know about dynamic taint analysis and
forward symbolic execution (but might have been afraid to
ask). In S&P, pages 317–331, 2010.

[67] Gang Tan and Greg Morrisett. ILEA: Inter-language analysis
across Java and C. In OOPSLA, pages 39–56, 2007.

[68] Web2py. Web. https://tinyurl.com/up2cw2rb, 2020.

[69] Fengguo Wei, Xingwei Lin, Xinming Ou, Ting Chen, and Xi-
aosong Zhang. JN-SAF: Precise and efficient NDK/JNI-aware
inter-language static analysis framework for security vetting
of Android applications with native code. In CCS, pages 1137–
1150, 2018.

[70] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas
Stadler, Gilles Duboscq, Christian Humer, Gregor Richards,
Doug Simon, and Mario Wolczko. One VM to rule them all.
In Onward!, pages 187–204, 2013.

[71] Wei Xu, Sandeep Bhatkar, and R. Sekar. Taint-enhanced policy
enforcement: A practical approach to defeat a wide range of
attacks. In USENIX Security, 2006.

[72] Zhaogui Xu, Peng Liu, Xiangyu Zhang, and Baowen Xu.
Python predictive analysis for bug detection. In FSE, pages
121–132, 2016.

[73] Lok Kwong Yan and Heng Yin. DroidScope: Seamlessly
reconstructing the OS and dalvik semantic views for dynamic
android malware analysis. In USENIX Security, pages 569–
584, 2012.

[74] Drew Zagieboylo and Andrew C. Myers. JLang. https:
//tinyurl.com/2tsrbkdt, 2020.

A More on POLYCRUISE Implementation

We implemented the DIFA engine for POLYCRUISE in C, con-
sisting of five components: event decoder, memory database,
dynamic information flow analyzer, and plugin support.

http://www.libarchive.org
https://tinyurl.com/2hpw3pwt
http://www.libtiff.org
https://tinyurl.com/yckr397m
https://tinyurl.com/4xwzakyf
http://cwe.mitre.org/
https://github.com/numpy/
https://www.openjpeg.org
https://tinyurl.com/2p94tvhp
https://www.graalvm.org/
https://tinyurl.com/v37799mp
https://tinyurl.com/27buex7n
https://tinyurl.com/nhhdtj4f
https://tinyurl.com/2d6tdhs5
https://tinyurl.com/ywbr9jm3
https://tinyurl.com/45sajhuw
https://docs.python.org/3.9
https://tinyurl.com/2fewd6ca
https://tinyurl.com/5n8pfv9m
https://tinyurl.com/3b32x54k
https://tinyurl.com/2p8wnmkr
https://tinyurl.com/up2cw2rb
https://tinyurl.com/2tsrbkdt
https://tinyurl.com/2tsrbkdt

Following the event definition in §3.3.1, the decoder parses
the events as a character stream to obtain definition-use pairs
and event type for each event and associated statement.

The memory database is implemented to empower low-
overhead online DIFA. Its high efficiency is achieved by
two strategies: (1) lightweight implementation—we only im-
plemented the necessary functionalities (e.g., memory pool,
hash, data management, and data add/query/delete); (2) high
memory utilization—for an average data size of 64bytes, the
database can hold 10+ million pieces with 1GB memory; and
(3) scalable memory pool—we used a scalable memory pool
to avoid frequent memory allocations and releases.

The online dynamic information flow analyzer is im-
plemented on top of the memory database while working
incrementally—each execution event triggers an updating
pass of DIFG. For the implementation of Algorithm 5, we
overcame two major challenges, with the thread graph and
due to language boundary, respectively.

To handle the large volume of events generated during
multi-threaded executions, we implemented DIFG as a set of
thread-level information flow graphs, such that (1) the events
within a thread can be analyzed sequentially and (2) the DI-
FAE can compute intra- and interprocedural data dependen-
cies in a specific thread graph upon receiving an event. To
compute interthread data flow, we maintained a global cache
shared by all thread graphs—for each memory write, the DI-
FAE updates the cache to keep the location of the latest write
to the memory address, while for memory read the DIFAE
obtains the location of the address’s latest write and inserts a
data flow edge from the write to the read. This heavy global
search hurts the DIFAE’s efficiency. To avoid this kind of
excessive searching, we adopt a local-first strategy: when a
local dependence is found, it will abandon the global search.

The other challenge is induced by language interoperations.
The SDA ensures the static/dynamic instrumentation to cover
all possible data flow paths across language boundaries. How-
ever, different data encapsulation and conversion between
languages become barriers for dynamic data dependence com-
putation during runtime. For instance, a process of converting
parameters from Python to C through C extension is {Python
type→ Pyobject→ C type} [59], while parameters flow from
Java to C through Java native invocation is in the form of
{Java type→ jobject→ C type} [51]. Instead of modeling all
interface APIs at language boundaries to guide how to relate
parameters together in different language components, we
adopted a field-insensitive approach for parameter passing in
foreign function invocations.

To illustrate, consider the example of Figure 12. Line 4 of
the Python unit is defined as a criterion (source). Variable
V1 flows along edge 1 to the callsite at line 6 and contin-
ues flowing along edge 2 into a PyObject args encoded from
V1 and V2. Without knowing how to decode args (language-
dependently), we conservatively add two data flow edges {3,
6} from the definition site of args to line 4 of the Python-C

1 from PyAdd import *
2
3 def main ():
4 V1 = 1 // source
5 V2 = 1
6 Da = PyAdd (V1, v2)

7 ……

PyAdd(PyObject *self, PyObject *args){
 int V3;
 int V4;
 PyArg_ParseTuple(args, "ii", &V3, &V4);

 Cadd (V3, V4);

 ……;}

int CAdd(int V5, int V6) {
 V = V5 + V6;
 return V
}

7
Python Python-C extension C

Figure 12: An example illustrating our field-insensitive ap-
proach to parameter passing in the DIFA of POLYCRUISE.

extension; edge 3 represents V1 flows into V3 while edge 6
indicates V1 flowing into V4 (which is a spurious data flow).
Although this conservative computation causes imprecision,
it ensures soundness and language independence hence the ex-
tensibility of our framework to support additional languages.

The DIFAE provides a set of interfaces for flexible ap-
plication plugin development in C. Specifically, a user of
POLYCRUISE can quickly implement a specific vulnerability
detection plugin with about 100 lines of C code. Then, the
user can easily integrate the plugin into our framework by
specifying the location and entry point of, as well as the lists
of sources/sinks relevant to, the plugin.

B Run-Time Slowdown Computation
Typically, we would compute the run-time slowdown of our
dynamic analysis against a benchmark by dividing the ob-
served/recorded execution time (TSDA) of the SDA-version
of the benchmark by the observed/recorded execution time
(Tpure) of the pure-version (§6.2). However, in the course of
our efficiency evaluation, we noticed that the Python inter-
preter has a nearly constant-time overhead in each execution
at its initialization stage. The major reason is that the cus-
tomized test frameworks (i.e., pytest and unittest) bring
apparent side-effects. The test frameworks need to initialize
the whole test set at each start and then execute the specified
case. The initialization even took longer than the pure test
case execution time. Moreover, as the test set grew, the extra
overhead became even greater. However, in the expected use
scenario of POLYCRUISE, the user would manually run it on
a subject system against individual executions/tests, rather
than having to automatically run an entire test set using the
test framework. We used the test frameworks only to facilitate
our evaluation experiments. Therefore, to accurately compute
the slowdown (i.e., with respect to net execution times), we
should leave out the initialization times ISDA and Ipure from
the observed ones. That is, the slowdown factor should be
computed as (TSDA− ISDA)/(Tpure− Ipure).

To obtain the initialization time costs, we took a simple
approximation approach by considering that the shortest ob-
served test execution mainly consists of the initialization stage
only. Accordingly, for a given benchmark, we took the ob-
served execution time of its fastest-running test as the initial-
ization time cost in computing the slowdown factor for that
benchmark (using the formula above).

	Introduction
	Background and Motivation
	The PolyCruise Approach
	Approach Overview
	Static Analyses/Instrumentation (Phase red1)
	Symbolic Translation (Step red1.1)
	Symbolic Dependence Analysis (SDA) (Step red1.2)
	SDA-Guided Static Instrumentation (Step red1.3)

	Online Dynamic Analysis (Phase red2)
	SDA-Guided Dynamic Instrumentation (Step red2.1)
	Information Flow Computation (IFC) (Step red2.2)
	Vulnerability Detection (plugins) (Step red2.3)

	Implementations and Limitations
	PyCBench: A Multilingual Microbench
	Evaluation
	Experiment Setup
	Experimental Methodology
	RQ1: Effectiveness of PolyCruise
	RQ2: Efficiency of PolyCruise
	RQ3: Vulnerability Discovery
	RQ4: Comparison with peer tools
	Regarding the Vulnerabilities Discovered
	Effort for Vulnerability Confirmation

	Related Work
	Conclusion
	More on PolyCruise Implementation
	Run-Time Slowdown Computation

